

FLEXTECH ENERGY STUDY

For

Newfield Town Hall 166 Main St Newfield, NY 14867 *and* Newfield Town Barn 79 Main St Newfield, NY 14867

New York State Energy Research and Development Authority

17 Columbia Circle Albany, New York 12203-6399

> REV 2 May 2nd, 2022

For questions regarding this report, please contact <u>FlexTech@nyserda.ny.gov</u>.

We hope the findings of this report will assist you in making decisions about energy efficiency improvements in your facility. Thank you for your participation in this program.

NOTICE

This report was prepared pursuant to the Flexible Technical Assistance Program (Hereinafter "FlexTech") administered by the New York State Energy Research and Development Authority (hereinafter "NYSERDA"). The opinions expressed in this report do not necessarily reflect those of NYSERDA or the State of New York, and reference to any specific product, service, process, or method does not constitute an implied or expressed recommendation or endorsement of it by NYSERDA or the State of New York. Further, NYSERDA and the State of New York make no warranties or representations, expressed or implied, as to the fitness for a particular purpose or merchantability of any product, apparatus, or service, or the usefulness, completeness, or accuracy of any processes, methods, energy savings, or other information contained, described, disclosed, or referred to in this report. NYSERDA and the State of New York make no representation that the use of any product, apparatus, process, method, or other information will not infringe privately-owned rights and will assume no responsibility for any loss, injury, or damage resulting from, or occurring in connection with, the use of information contained, described, disclosed or referred to in this report.

State of New York Kathy Hochul, Governor

New York State Energy Research and Development Authority

DISCLAIMER

This FlexTech energy audit study report must be considered a preliminary evaluation only. The savings presented in this report do not incorporate any interactive effect between the measures. The projected implementation costs of the measures, and the resulting energy and monetary savings, are all estimated values based on limited site observations, calculations and assumptions.

The energy conservation opportunities contained in this report have been reviewed for technical accuracy. However, because energy savings ultimately depend on behavioral factors, the weather, and many other factors outside its control, Taitem Engineering does not guarantee the cost savings estimated in this report. Taitem Engineering shall in no event be liable should the actual energy savings vary from the estimated savings herein.

Estimated installation costs are based on a variety of sources, including our own experience at similar facilities, our own pricing research using local contractors and vendors, and cost handbooks such as those by RS Means. The cost estimates represent our best judgment for the proposed action. The building owner is encouraged to independently confirm these cost estimates. Since actual installed costs can vary widely for a particular installation, and for conditions, which cannot be known prior to in-depth investigation and design, Taitem Engineering does not guarantee installed cost estimates and shall in no event be liable should actual installed costs vary from the estimated costs herein.

In addition, any actions which building management will take must comply with all applicable codes and other legal requirements. Building management will also need to obtain professional guidance for developing work scopes or design for the improvements recommended in this report.

TABLE OF CONTENTS

I. EXECUTIVE SUMMARY	7
Introduction	7
Project Background	7
Summary of Findings	3
2. PROJECT DESCRIPTION	3
Building Systems Narrative	3
Town Hall	3
Building Envelope	3
Heating, Ventilation, and Cooling (HVAC)10)
Domestic Hot Water1	L
Lighting1	L
Town Barn	L
Building Envelope1	L
Heating, Ventilation, and Cooling (HVAC)13	3
Domestic Hot Water14	1
Lighting14	1
3. ENERGY USAGE ANALYSIS14	ļ
Town Hall1	5
Utility Bill Data1	5
Analysis1	7
Benchmarking1	7
Town Barn18	3
Utility Bill Data18	3
Analysis20)
Benchmarking)
4. AREAS OF OPPORTUNITY 22	L

Table 4.1: Recommended Energy Conservation Measures – Town Hall	22
Table 4.2: Recommended Energy Conservation Measures – Town Barn	23
Table 4.3: Greenhouse Gas Reduction Summary	24
Evaluated Energy Conservation Measures	25
ECM 1: Town Hall – Insulate Attic	25
ECM 2: Town Hall – Air Seal Penetrations	28
ECM 3: Town Hall – Setback Thermostats	31
ECM 4: Town Hall – Install Tankless Electric Water Heater	33
ECM 5: Town Hall – Install Air Source Heat Pump	35
ECM 6: Town Barn – Insulate Attic	38
ECM 7: Town Barn – Insulate Walls	41
ECM 8: Town Barn – Install Air Curtains	43
ECM 9: Town Barn – Setback Thermostats	45
ECM 10: Town Barn – Install Electric Tankless Water Heater	47
ECM 11: Town Barn – Install Air Source Heat Pump	49
5. APPENDIX DATA	51
5. APPENDIX DATA Town Hall Equipment & Lighting	
	51
Town Hall Equipment & Lighting	51 52
Town Barn Equipment & Lighting	51 52 53
Town Hall Equipment & Lighting Town Barn Equipment & Lighting ECM-1 Calculations	51 52 53 54
Town Hall Equipment & Lighting Town Barn Equipment & Lighting ECM-1 Calculations ECM-2 Calculations	51 52 53 54 55
Town Hall Equipment & Lighting Town Barn Equipment & Lighting ECM-1 Calculations ECM-2 Calculations ECM-3 Calculations	51 52 53 54 55 57
Town Hall Equipment & Lighting Town Barn Equipment & Lighting ECM-1 Calculations ECM-2 Calculations ECM-3 Calculations ECM-4 Calculations	51 52 53 54 55 57 58
Town Hall Equipment & Lighting Town Barn Equipment & Lighting ECM-1 Calculations ECM-2 Calculations ECM-3 Calculations ECM-4 Calculations ECM-5 Calculations	51 52 53 54 55 57 58 60
Town Hall Equipment & Lighting Town Barn Equipment & Lighting ECM-1 Calculations ECM-2 Calculations ECM-3 Calculations ECM-4 Calculations ECM-5 Calculations ECM-6 Calculations	51 52 53 54 55 57 58 60 61
Town Hall Equipment & Lighting Town Barn Equipment & Lighting ECM-1 Calculations ECM-2 Calculations ECM-3 Calculations ECM-4 Calculations ECM-5 Calculations ECM-6 Calculations ECM-7 Calculations	51 52 53 54 55 57 58 60 61 62
Town Hall Equipment & Lighting Town Barn Equipment & Lighting ECM-1 Calculations ECM-2 Calculations ECM-3 Calculations ECM-4 Calculations ECM-5 Calculations ECM-6 Calculations ECM-7 Calculations ECM-8 Calculations	51 52 53 54 55 57 57 58 60 61 62 63

Town Hall Utility Analysis Calculations	68
Town Barn Utility Analysis Calculations	69
Town Hall Building Load Coefficient Calculations	70
Town Barn Building Load Coefficient Calculations	72

1. EXECUTIVE SUMMARY

Introduction

This report presents the results of an energy use and savings opportunities assessment for the Newfield Town Hall, located at 166 Main Street in Newfield, NY and the Newfield Town Barn, located at 79 Main Street, also in Newfield. Taitem Engineering conducted a site visit to the facilities on January 13th, 2022 to observe the existing conditions of the facilities and to identify opportunities to reduce energy consumption. Heather McCarty (Town Councilperson) and Blixy Taetzsch (Town Bookkeeper) represented the Town of Newfield for the Town Hall, and Kevin Berggren (Highway Superintendent) represented the Town for the Town Barn. George Aiken represented Taitem Engineering for both facilities.

The purpose of the study is to provide insights into the building energy use and to identify opportunities to reduce energy consumption and greenhouse gas emissions. This study is also intended to identify feasible pathways towards eliminating direct fossil fuel consumption at each building by replacing existing fossil fuel burning equipment with electrically driven equipment.

This report was written and prepared by George Aiken, Project Engineer, Taitem Engineering, and was reviewed by Umit Sirt, PE, Senior Engineer and Partner, Taitem Engineering. All questions and comments should be directed to George Aiken at (607) 277-1118 ext. 137, or <u>gaiken@taitem.com</u>.

Project Background

The Town of Newfield commissioned this study for multiple, related reasons. The first is that they are nearing (or have exceeded) the end of their expected useful life for much of the HVAC equipment in the Town Hall. As such, they are, or will soon be, facing large capital cost expenditures for equipment replacement. The second reason is that reducing energy consumption typically means reducing operating costs. It also has the possibility of reducing HVAC equipment replacement costs if savings are substantial enough to impact equipment sizing. The third reason is the opportunity for substantial reduction of greenhouse gas (GHG) emissions. As responsible stewards of their environment, the Town of Newfield is focused on reducing the GHG emissions associated with their operations to the extent of economic and practical feasibility.

It is worth noting that the Town of Newfield has already made significant improvements to their operations in the interest of reducing energy consumption and greenhouse gas emissions. Most notably, the two buildings at focus in this study have had all interior

and exterior retrofitted with LED lighting, substantially reducing electrical demand. Staff at both buildings are also very conscientious about energy use, and are diligent about keeping lights off when spaces are not in use, and setting back thermostats during unoccupied periods.

Summary of Findings

Multiple energy conservation measures were identified and analyzed for their cost effectiveness as well as their energy and greenhouse gas savings impacts. Of these measures, air sealing and insulation stood out as the highest impact on energy and greenhouse gas emissions as well as being among the most cost effective options. Moderate thermostat setbacks also had a significant impact on energy usage and GHG emissions with very short payback periods. Replacing the gas fired heating systems in both buildings with air source heat pumps provided the single largest reduction in GHG emissions with very short payback periods when considering depreciation of existing equipment. Some of the measures which did *not* have as large impacts or cost effectiveness include heat pump water heaters and air curtains over garage doors. Details on all of the measures analyzed in this report can be found in Section 4. Areas of Opportunity.

2. PROJECT DESCRIPTION

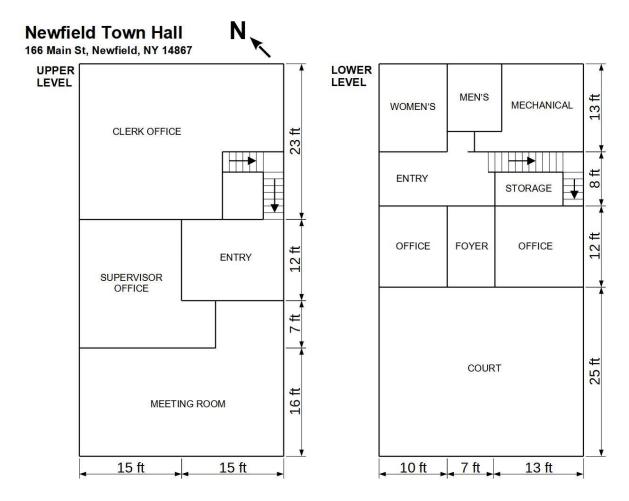
Building Systems Narrative

Town Hall

The Newfield Town Hall is a municipal building used for government offices, public meetings, and town court. The building was originally constructed in the 1970s. The building has about 3,500 ft² of gross floor area, containing office spaces, a meeting room, a courtroom, bathrooms, and storage/utility spaces. It has two floors, one of which is partially below grade. Two primary entrances serve the building, one on each floor. The building operating schedule varies based on community meetings in the evenings, but generally is in occupied mode approximately 8:00 am – 4:00 pm, Monday – Friday.

Building Envelope

The building walls are masonry construction with interior wood framing and minimal insulation (presumably fiberglass) between stud spaces. The ceiling of the top floor is



insulated with 5'' - 6'' of cellulose insulation housed under a vented attic space. The windows (about 6% of gross wall area) are more recent double pane vinyl type and are reasonably tight. The main entrance doors are insulated aluminum frame units with glazing with minimal gaps, though they are reported to not shut tightly with the spring door closers alone.

Photo: Newfield Town Hall - top floor shown, bottom floor is open to the back (building is on a steep slope).

Drawing: Newfield Town Hall – Rough dimensions and layout of the building shown.

Heating, Ventilation, and Cooling (HVAC)

Heating is provided by a forced draft, non-condensing natural gas fired boiler. Heat is distributed by a hydronic baseboard radiant system with three zones serving both floors of the building. The total area of the baseboard system is small relative to the size and insulation level of the building, so water temperatures are expected to be high with this system. The boiler was originally manufactured in 2000. NYSERDA's expected useful life for this type of boiler is 25 years.

Cooling is provided by four ductless minisplit systems serving the Town Clerk's office, meeting room, court room, and court office. The remaining areas are cooled passively by this system. The minisplits are also used for supplementary heating in the winter, allowing the thermostats controlling the hydronic system to be left turned down when spaces (primarily the court room and meeting space) are occupied for just a short time. Three of

the minisplit systems were manufactured in 2008, with the fourth being manufactured in 2000. NYSERDA's expected useful life of a minisplit system is 15 years.

Domestic Hot Water

Domestic hot water (DHW) is supplied by an electric storage water heater, with non-recirculating distribution.

Lighting

Interior lighting consists of T8 fluorescent fixtures with replacement LED bulbs. Exterior lighting consists of LED spot lights and wallpacks.

See the appendix for a list of equipment and lighting currently installed in the Town Hall.

Town Barn

The Newfield Town Barn is used as offices for the Department of Public Works and as garages for equipment storage and repair. The building was originally built in 1942, and two additions were made, one in 1976 and the second in 1993. The building has 7,500 ft² of gross floor area, of which about 1,600 ft² is devoted to offices, bathrooms, mechanical room, and small equipment storage areas. The remainder is open garage space divided into three areas, each with separate overhead door entrances. The building operating schedule varies with the seasons – during the winter the building is typically occupied from 7:00 am – 3:30 pm, Monday – Friday. In the summer, that shifts to 6:30 am – 4:00 pm, Monday – Thursday.

Building Envelope

The original barn was constructed with concrete block and has uninsulated walls. The newer additions are built with poured concrete stem walls with wood framed walls above those. The wood frame walls are insulated with fiberglass batt, though the insulation appears to have deteriorated in some places. The ceiling above all areas of the barn is insulated with about 8" of loose fiberglass. All five overhead garage doors (approx. 30% of gross wall area) have been replaced with high quality, insulated and weather sealed units. Of the windows (approx. 1% of gross wall area) half have been replaced with double pane vinyl windows, and there is a plan to replace the remaining windows in the near future.

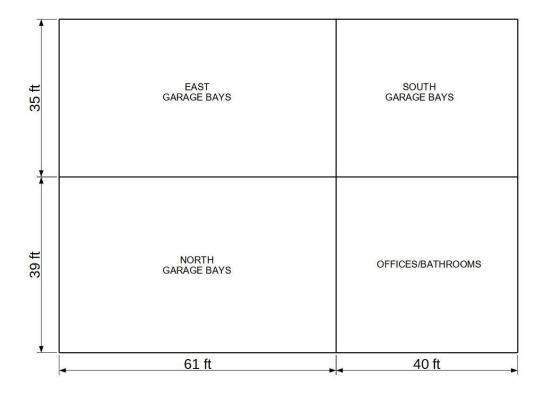


Photo: Newfield Town Barn - the roof profile of the original barn can be seen directly above the double doors. The 1976 addition is obscured by the later 1993 addition to the left of the original barn.

Newfield Town Barn 79 Main St, Newfield, NY 14867

Drawing: Newfield Town Barn – Rough dimensions and layout of the building shown.

Heating, Ventilation, and Cooling (HVAC)

The office area and one of the garage bays are heated by a natural gas fired condensing boiler. Heat is distributed in the office areas with baseboard heaters and in the garage bay with fan coil units. Heat is provided to the remaining two garage areas by two natural gas fired, non-condensing unit heaters. Mechanical cooling of the office spaces is provided by one or two window AC units. Ventilation is provided by a hood over the welding area, with a larger fan located in the same garage bay for whole area ventilation. These fans are typically left off, and a sliding door is provided over the larger fan to reduce air exfiltration. With frequent garage door openings, ventilation is usually adequate without the need for fans.

Domestic Hot Water

Domestic hot water (DHW) is supplied by an indirect storage water heater heated by the space heating condensing boiler with non-recirculating distribution.

Lighting

Interior lighting consists of T8 fluorescent fixtures with replacement LED bulbs and LED fixtures. Exterior lighting consists of LED spot lights and wallpacks.

See the appendix for a list of equipment and lighting currently installed in the Town Barn.

3. ENERGY USAGE ANALYSIS

Electricity is delivered by NYSEG and supplied by Constellation Energy and NexAmp for both buildings. Natural gas is supplied and delivered by NYSEG for both buildings.

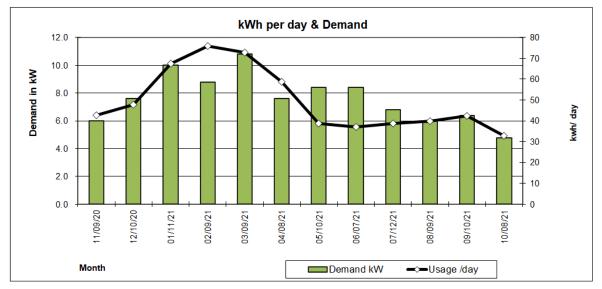
Dates used to calculate annual energy costs were November 2020 – October 2021 for both buildings.

Greenhouse gas emissions from electricity and natural gas consumption were calculated based on the NY Upstate GHG emissions rate of 234.5 lb CO_2/MWh and 11.86 lb $CO_2/therm$, respectively¹.

¹ From the US EPA Emissions & Generation Resource Integrated Database (eGRID) <u>https://www.epa.gov/egrid</u> Data from 2020.

Town Hall

Utility Bill Data


ELECTRICITY CONSUMPTION AND COST ANALYSIS

Town of Newfield	
------------------	--

Gross Area: 3,480 s.f. 17,609 Btu/s.f./Yr \$ 0.64 /s.f. 3.1 watts/s.f. Utility: NYSEG Account # ends w/ -062 Rate: SC Meter Charge: \$ 20.70 / month Demand Charge: \$ 9.43 / kW Supplier: Constellation/NexAmp

		Usa	ge	Electricity Charges		Total						
Month		Energy	Demand	Utility	Supply	Electricity	Demand	Energy	Load	Usage		
Ending	Days	kWh	kW	Cost	Costs	Cost	Cost	\$/kWh	Factor	/day		
11/09/20	30	1,280	6.0	\$ 83	\$ 53	\$ 136	\$ 57	\$ 0.046	0.30	43		
12/10/20	31	1,480	7.6	\$ 100	\$ 52	\$ 152	\$ 72	\$ 0.040	0.26	48		
01/11/21	32	2,160	10.0	\$ 130	\$ <mark>8</mark> 8	\$ 218	\$ 94	\$ 0.048	0.28	68		
02/09/21	29	2,200	8.8	\$ 117	\$ 74	\$ 191	\$ 83	\$ 0.040	0.36	76		
03/09/21	28	2,040	10.8	\$ 138	\$ 94	\$ 232	\$ 102	\$ 0.054	0.28	73		
04/08/21	30	1,760	7.6	\$ 105	\$ 53	\$ 158	\$ 72	\$ 0.037	0.32	59		
05/10/21	32	1,240	8.4	\$ 157	\$ 48	\$ 205	\$ 79	\$ 0.085	0.19	39		
06/07/21	28	1,040	8.4	\$ 121	\$ 57	\$ 178	\$ 79	\$ 0.075	0.18	37		
07/12/21	35	1,360	6.8	\$ 104	\$ 94	\$ 198	\$ 64	\$ 0.083	0.24	39		
08/09/21	28	1,120	6.0	\$ 100	\$ 77	\$ 177	\$ 57	\$ 0.089	0.28	40		
09/10/21	32	1,360	6.4	\$ 99	\$ 109	\$ 208	\$ 60	\$ 0.093	0.28	43		
10/08/21	28	920	4.8	\$ 82	\$ 75	\$ 157	\$ 45	\$ 0.099	0.29	33		
	363	17,960	91.6	\$ 1,336	\$ 874	\$ 2,210	\$ 864	\$ 0.061	0.27	49		
	,	Annual Energy:	17,960	kWh / year	\$ 2,210	/year	Unit Costs					
	Peak Demand:		11	kW Peak		Demar	nd \$ 9.43	\$ \$/kW				
	Ave	rage Demand:	8	kW		Ener	gy \$ 0.061	\$/kWh Increm	\$/kWh Incremental			
NY Upstate	GHG E	missions Rate:	235	lb CO2 / MW	h	Blende	ed \$ 0.123	\$/kWh Blende	ł			

NY Upstate GHG Emissions Rate: Total GHG Emissions:

4,212 lb CO2 / year

NATURAL GAS CONSUMPTION AND COST ANALYSIS

rown or newneid	Town	of	Newfield
-----------------	------	----	----------

3,480	s.f.
21,580	Btu/s.f./Yr
\$ 0.37	/s.f.

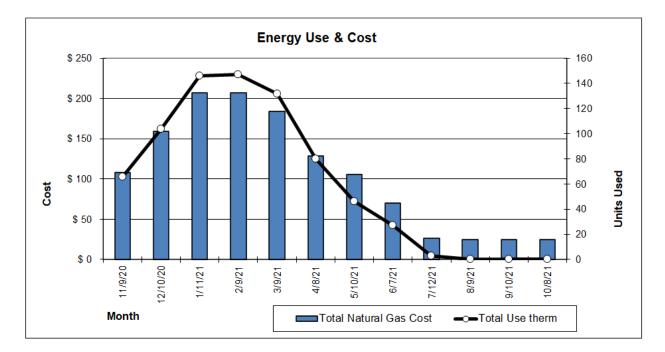
Natural Gas

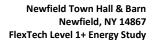
Use & Cost Summary:

Utility:	NYSEG	
Account # :	ends w/ -062	
Rate:	SC	
Billing unit:	therm	
BTU/Unit:	100,000	
Meter Charge:	\$ 24.60	/ month

Supplier: NYSEG

Month	#	Utility C	harges	Supplier Charges		Total Use Total Natural		Average
Ending	Days	therm	Cost	therm	Cost	therm	Gas Cost	\$/therm
11/9/20	30	66	\$ 108	66	\$ O	66	\$ 108	\$ 1.26
12/10/20	31	104	\$ 159	104	\$ O	104	\$ 159	\$ 1.29
1/11/21	32	146	\$ 207	146	\$ O	146	\$ 207	\$ 1.25
2/9/21	29	147	\$ 207	147	\$ O	147	\$ 207	\$ 1.24
3/9/21	28	132	\$ 184	132	\$ O	132	\$ 184	\$ 1.21
4/8/21	30	80	\$ 129	80	\$ O	80	\$ 129	\$ 1.31
5/10/21	32	46	\$ 106	46	\$ O	46	\$ 106	\$ 1.76
6/7/21	28	27	\$ 70	27	\$ O	27	\$ 70	\$ 1.68
7/12/21	35	3	\$ 26	3	\$ O	3	\$ 26	\$ 0.47
8/9/21	28	0	\$ 25	0	\$ O	0	\$ 25	
9/10/21	32	0	\$ 25	0	\$ O	0	\$ 25	
10/8/21	28	0	\$ 25	0	\$ O	0	\$ 25	
	363	751	\$ 1,271	751	\$ 0	751	\$ 1,271	\$ 1.30


Annual Natural Gas Cost Annual Natural Gas Consumption


\$1,271 /year

Incremental Cost per therm: NY Upstate GHG Emissions Rate: Total GHG Emissions:

751 therm \$ 1.299 \$12.99 / mmBtu

11.86 lb CO2 / therm 8,907 lb CO2 / year

Analysis

The Town Hall's utility history show the greatest electrical demand in the winter, reflecting use of the minisplit heat pumps for supplemental heating, as well as multiple small, in-wall electric space heaters and potentially higher DHW usage during the colder months. Electric demand shows a second, smaller peak in the summer months, reflecting the use of the minisplits for space cooling. Electric demand is lowest in the more temperate fall months.

The natural gas demand, not surprisingly, is highest in the coldest winter months, tapering to zero demand in the summer.

Benchmarking

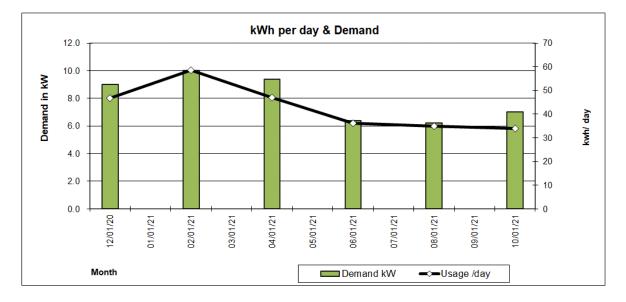
The EPA's Energy Star Portfolio Manager website compares the energy use of Newfield Town Hall to similar buildings nationwide, normalized for weather and operating characteristics. Portfolio Manager generates a benchmark score that indicates your performance. A score of 50 represents median performance. A higher score is better than average; lower is worse. A score of 75 or higher would earn the Energy Star designation. The website can be used to track building energy use over time and document the success of energy conservation efforts.

Portfolio Manager is located at:

https://www.energystar.gov/buildings/facility-owners-and-managers/existingbuildings/use-portfolio-manager

For the analysis period of October 2020 through September 2021, Newfield Town Hall has an Energy Star Score of 86. This relatively high score reflects well on the energy savings practices the town has implemented already, as well as some of the building's characteristics such as a compact footprint, partially earth-bermed lower level, and moderate levels of insulation in the walls and attic.

Town Barn


Utility Bill Data

ELECTRICITY CONSUMPTION AND COST ANALYSIS

Town of Newfield					Utility: N	VYSEG	
					Account # e	ends w/ -15	9
Gross Area:	7,474 s.f.				Rate: S	SC	
	7,039 Btu/s.f./	′r			Meter Charge:	\$ 20.70	/ month
	\$ 0.27 /s.f.				Demand Charge:	\$ 9.43	/ kW
	1.3 watts/s.f.				Supplier: (Constellatio	n/NexAmp
	Usage	Electrici	ty Charges	Total	7		
. –							

			J -		1					
Month		Energy	Demand	Utility	Supply	Electricity	Demand	Energy	Load	Usage
Ending	Days	kWh	kW	Cost	Costs	Cost	Cost	\$/kWh	Factor	/day
12/10/20	62	2,900	9.0	\$ 217	\$ 111	\$ 328	\$ 85	\$ 0.070	0.22	47
02/02/21	54	3,160	10.0	\$ 249	\$ 107	\$ 356	\$ 94	\$ 0.070	0.24	59
04/05/21	62	2,920	9.4	\$ 237	\$ 97	\$ 334	\$ 89	\$ 0.070	0.21	47
06/03/21	59	2,140	6.4	\$ 185	\$ 77	\$ 262	\$ 60	\$ 0.075	0.24	36
08/05/21	63	2,200	6.2	\$ 187	\$ 137	\$ 324	\$ 58	\$ 0.102	0.23	35
10/06/21	62	2,100	7.0	\$ 247	\$ 154	\$ 401	\$ 66	\$ 0.140	0.20	34
	362	15,420	48.0	\$ 1,322	\$ 683	\$ 2,005	\$ 453	\$ 0.085	0.22	43

Annual Energy:	15,420	kWh / year	\$ 2,005	/year		Unit Costs	
Peak Demand:	10	kW Peak			Demand	\$ 9.43	\$/kW
Average Demand:	8	kW			Energy	\$ 0.085	\$/kWh Incremental
NY Upstate GHG Emissions Rate:	235	lb CO2 / MWh			Blended	\$ 0.130	\$/kWh Blended
Total GHG Emissions:	3,616	lb CO2 / year					

NATURAL GAS CONSUMPTION AND COST ANALYSIS

Town of Newfield	
------------------	--

7,474	s.f.
29,181	Btu/s.f./Yr
\$ 0.43	/s.f.

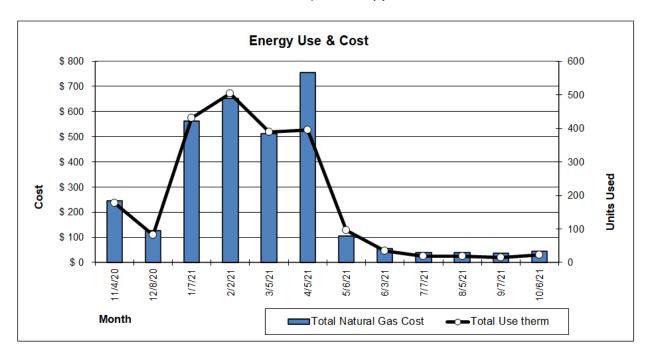
Natural Gas

Use & Cost Summary:

Utility:	NYSEG						
Account # :	ends w/ -159						
Rate:	SC						
Billing unit:	therm						
BTU/Unit:	100,000						
Meter Charge:	\$ 24.60	/ month					

Supplier: NYSEG

Month	#	Utility C	harges	Supplier	Charges	Total Use	Total Natural	Average
Ending	Days	therm	Cost	therm	Cost	therm	Gas Cost	\$/therm
11/4/20	30	177	\$ 246	177	\$ O	177	\$ 246	\$ 1.25
12/8/20	34	82	\$ 126	82	\$ O	82	\$ 126	\$ 1.24
1/7/21	30	430	\$ 563	430	\$ O	430	\$ 563	\$ 1.25
2/2/21	26	504	\$ 653	504	\$ O	504	<mark>\$ 6</mark> 53	\$ 1.25
3/5/21	31	390	\$ 513	390	\$ O	390	\$ 513	\$ 1.25
4/5/21	31	395	\$ 755	395	\$ O	395	\$ 755	\$ 1.85
5/6/21	31	96	\$ 106	96	\$ O	96	\$ 106	\$ 0.85
6/3/21	28	34	\$ 55	34	\$ O	34	\$ 55	\$ 0.89
7/7/21	34	18	\$ 40	18	\$ O	18	\$ 40	\$ 0.86
8/5/21	29	18	\$ 39	18	\$ 0	18	\$ 39	\$ 0.80
9/7/21	33	15	\$ 37	15	\$ O	15	\$ 37	\$ 0.83
10/6/21	29	22	\$ 44	22	\$ 0	22	\$ 44	\$ 0.88
	366	2,181	\$ 3,177	2,181	\$ O	2,181	\$ 3,177	\$ 1.32


Annual Natural Gas Cost

\$ 3,177 /year

Annual Natural Gas Consumption Incremental Cost per therm: NY Upstate GHG Emissions Rate: Total GHG Emissions: 2,181 therm \$ 1.321 \$ 13.21 / mmBtu

11.86 lb CO2 / therm

25,867 lb CO2 / year

Analysis

The Town Barn's utility history shows the greatest electrical demand in the winter, likely due to more frequent garage use during winter for things like lighting, welding, etc. Electrical demand is lower in the summer and fall months where outside work predominates.

The natural gas demand, not surprisingly, is highest in the coldest winter months, tapering to minimal demand in the summer for domestic hot water production.

Benchmarking

The EPA's Energy Star Portfolio Manager website compares the energy use of Newfield Town Barn to similar buildings nationwide, normalized for weather and operating characteristics. Portfolio Manager generates a benchmark score that indicates your performance. A score of 50 represents median performance. A higher score is better than average; lower is worse. A score of 75 or higher would earn the Energy Star designation. The website can be used to track building energy use over time and document the success of energy conservation efforts.

Portfolio Manager is located at:

https://www.energystar.gov/buildings/facility-owners-and-managers/existingbuildings/use-portfolio-manager

Many building types are represented in the EPA's Energy Star Portfolio Manager; however, vehicle maintenance garages are not represented. However, if the barn were to be considered a distribution warehouse, then for the analysis period of October 2020 through September 2021, it would receive an Energy Star Score of 82. This relatively high score reflects well on the energy savings practices the town has implemented already (e.g. LED lighting upgrades, thermostat setbacks, highly insulated and weatherstripped garage doors, etc.), as well as the moderate levels of insulation in the walls and attic.

4. AREAS OF OPPORTUNITY

In the following section, operation and maintenance improvements and capital-intensive modifications are discussed individually and identified as energy conservation measures (ECMs, also referred to informally as "measures"). For each measure, this discussion may include:

- 1) The rationale for implementing the measure;
- 2) Cost/savings values;
- 3) Important assumptions that were made in evaluating the potential costs and savings; and
- 4) Notes on other issues related to the measure.

The list of ECMs is organized by building, with the Town Hall measures first, followed by Town Barn measures. Within each building, the list is organized into two categories. The first category is measures that save energy by reducing the energy load on the building, such as installing additional insulation or installing more efficient lighting. The second category is measures that switch from natural gas heating equipment to heat pumps.

The ECM calculations in this section are stand-alone measures that do not account for possible interactions with the other calculations. Each measure shows the energy savings that may be expected if it is the only measure to be implemented. If multiple measures will be implemented, energy savings will be lower than the individual values represented.

For example, ECM-1 Insulate Attic serves to reduce energy loss through the building shell while ECM-3 Setback Thermostats serves to reduce energy consumption by better use of heating equipment. If ECM-1 is implemented, the expected energy savings would be 6.5% of baseline, meaning that the new energy use would be around 93.5% of baseline. If ECM-3 is *also* implemented, the expected energy savings would be approximately 5.1% of the *new* energy use (93.5% of baseline) or about 4.8% of baseline energy use. The *combined* effect of these two measures would be about 11.2% of baseline. The cumulative savings figures in the following tables take these interactive effects into account.

See the appendix for detailed calculations for each of the measures in this report.

Table 4.1: Recommended Energy Conservation Measures – Town Hall

BASELIN	E ENERGY	SUMMARY

	Electric	Natural Gas		#4 Oil			Propane		Other	Total Baseline Use
	(kWh)	(therms)	(gallons)	(gallons)	(gallons)	(lbs.)	(gallons)	(tons)	(MMBtu)	(MMBtu)
Baseline Energy Use	17,960.0	751.0								136.4
Average Utility Rate	\$0.12	\$1.69								Total Annual Cost (\$)
Baseline Annual Cost	\$2,210	\$1,271								\$3,481

ENERGY SAVINGS SUMMARY

			Ele	ctric	Fuel	Energy	٨	Cost Savings		Cimela
Measure Description	Measure Status ¹	Fuel Savings Type ²	Suppry	0 (Savings to Total Baseline Use (%) ³	Annual Cost Savings	to Total Annual Cost (%) ⁴	Project Cost	Simple Payback (Years)
ECM 1 - Insulate Attic	RNE	NGas	19	0.0	8.8	6.5%	\$115	3.3%	\$3,567	31
ECM 2 - Air Seal Penetrations	R	NGas	0	0.0	11.8	8.7%	\$153	4.4%	\$350	2.3
ECM 3 - Setback Thermostats	R	NGas	0	0.0	7.0	5.1%	\$91	2.6%	\$600	6.6
ECM 4 - Install Tankless Water Heater	RNE	Elec	507	0.0	0.0	1.3%	\$37	1.1%	\$1,800	49
ECM 5 - Install Air Source Heat Pump	R	NGas	-3,801	-4.1	75.1	45.6%	\$705	20.3%	\$34,200	48.5
	TOTAL (AII):							31.6%	\$40,517	37
TOTAL (Recommended	Only with I	nteractions):	-1,975	-2	75	50.1%	\$835	24.0%	\$40,517	49

Mæs	ure Status ¹	Fuel S	aved	M MBtu Co	nversion Facto	Notes:
1	Implemented	Elec	Electric	Btu	1,000,000	⁴ Fuel Savings Type: Indicate
R	Recommended	NGas	Natural Gas	kWh	0.003412	savings from multiple fuel sou
RS	Further Study Recommended	012	#2 OI	therms	0.1	³ Energy Savings to Total Fue ⁴ Cost Savings to Total Annual
NR	Not Recommended	014	#4 OI	#2 gallon	0.139	Cost sa vings to Total Annua
RME	Recommeded Mutually Exclusive	016	#6 OII	#4 gallon	0.1467	Instructions:
ME	Mutually Exclusive to Recommended Option	Steam	District Steam	#6 gallon	0.15	* Fill in the light blue cells, as a
RNE	Recommended Non-Energy	LPG	Propane	Steam lbs.	0.0012	* Energy savings must be pre
		Coal	Coal	LPG gallon	0.0915	* Update the baseline energy
		Other	Other	Coaltons	24	* Unhide rows to enter more r

e the reported MMBtu savings fuel type. Select the predominant fuel type if there are MMBtu SOUTORS

uel Baseline Use is a comparison of the total electric & fuel savings to the total baseline energy use ual Cost is a comparison of the total annual cost savings to the total baseline annual energy cost

appropriate. White cells will auto-calculate.

resented as savings at the customer's utility meter(s), not at the individual building or tenant space

gy use conversion factors in the 'References' tab, as necessary

e mea sures, as necessa ry

Table 4.2: Recommended Energy Conservation Measures – Town Barn

BASELINE	ENERGY	SUMMARY

	Electric	Natural Gas	#2 Oil	#4 Oil	#6 Oil	Steam	Propane	Coal	Other	Total Baseline Use
	(kWh)	(therms)	(gallons)	(gallons)	(gallons)	(lbs.)	(gallons)	(tons)	(MMBtu)	(MMBtu)
Baseline Energy Use	15,420.0	2,181.0								270.7
Average Utility Rate	\$0.13	\$1.46								Total Annual Cost (\$)
Baseline Annual Cost	\$2,005	\$3,177								\$5,182

ENERGY SAVINGS SUMMARY

			Elec	ctric	Fuel	Energy Savings	A	Cost Savings		Circula
Measure Description	Measure Status ¹	-tur 1 Tur 2		Demand Savings (kW)	Fuel Savings (MMBtu)	to Total	Annual Cost Savings	to Total Annual Cost (%) ⁴	Project Cost	Simple Payback (Years)
ECM 6 - Insulate Attic	RNE	NGas	0	0.0	21.9	8.1%	\$289	5.6%	\$12,781	44
ECM 7 - Insulate Walls	R	NGas	0	0.0	66.0	24.4%	\$873	16.8%	\$15,406	18
ECM 8 - Install Air Curtains	NR	NGas	0	0.0	5.3	2.0%	\$70	1.4%	\$38,600	551
ECM 9 - Setback Thermostats	R	NGas	0	0.0	20.2	7.5%	\$262	5.1%	\$800	3.1
ECM 10 - Install Tankless Water Heater	RNE	NGas	-217	0.0	20.2	7.2%	\$248	4.8%	\$1,800	7
ECM 11 - Install Air Source Heat Pump	R	NGas	-15,255	-37.8	197.9	53.9%	\$961	18.5%	\$50,400	52
	TOTAL (AII):							52.2%	\$119,787	44
TOTAL (Recommended	-6,914	-17	218	71.9%	\$2,135	41.2%	\$81,187	38		

Meesure Status		Fuel Saved		MMBtu Conversion Facto		Notes:
1	Implemented	Elec	Electric	Btu	1,000,000	Fuel Savings Type: Indicate the reported MMBtu savings fuel type. Select the predominant fuel type if there are MMBtu
R	Recommended	NGas	Natural Gas	kWh	0.003412	savings from multiple fuel sources ³ Energy Savings to Total Fuel Baseline Use is a comparison of the total electric & fuel savings to the total baseline energy use
R	S Further Study Recommended	012	#2 OI	therms	0.1	⁴ Cost Savings to Total Annual Cost is a comparison of the total annual cost savings to the total baseline annual energy cost
N	R Not Recommended	014	#4 Oil	#2 gallon	0.139	Cost sa wings to Total Animula Cost is a companisori or the total animula cost sawings to the total tasenine animula remenyy cost
R	ME Recommeded Mutually Exclusive	086	#6 OII	#4 gallon	0.1467	Instructions:
Ν	E Mutually Exclusive to Recommended Option	Steam	District Steam	#6 gallon	0.15	* Fill in the light blue cells, as appropriate. White cells will auto-calculate.
R	NE Recommended Non-Energy	LPG	Propane	Steam lbs.	0.0012	* Energy savings must be presented as savings at the customer's utility meter(s), not at the individual building or tenant space
		Coal	Coal	LPG gallon	0.0915	* Update the baseline energy use conversion factors in the 'References' tab, as necessary
		Other	Other	Coal tons	24	* Unhide rows to enter more measures, as necessary

Table 4.3: Greenhouse Gas Reduction Summary

Greenhouse Gas Reductions for Town of Newfield					
Newfield Town Hall					
Existing Greenhouse Gas (GHG) Emissions		13,119 lb CO2/year			
Energy Conservation Measures	Recommendation	Ib CO2/year Reduction	% GHG Reduction	Installed Cost	Payback Years
ECM 1 - Insulate Attic	RNE	1,047	8%	\$ 3,567	31
ECM 2 - Air Seal Penetrations	R	1,398	11%	\$ 350	2
ECM 3 - Setback Thermostats	R	827	6%	\$ 600	7
ECM 4 - Install Tankless Water Heater	RNE	119	1%	\$ 1,800	49
ECM 5 - Install Air Source Heat Pump	RNE	7,671	58%	\$ 34,200	49
Subtotal (Recommended Measures with Interaction Effects)		9,080	69%	\$ 40,517	49
Newfield Town Barn					
Existing Greenhouse Gas (GHG) Emissions		29,483 lb CO2/year			
Energy Conservation Measures	Recommendation	Ib CO2/year Reduction	% GHG Reduction	Installed Cost	Payback Years
ECM 6 - Insulate Attic	RNE	2,593	9%	\$ 12,781	44
ECM 7 - Insulate Walls	R	7,834	27%	\$ 15,406	18
ECM 8 - Install Air Curtains	NR	629	2%	\$ 38,600	551
ECM 9 - Setback Thermostats	R	2,396	8%	\$ 800	3
ECM 10 - Install Tankless Water Heater	R	2,395	8%	\$ 1,800	7
ECM 11 - Install Air Source Heat Pump	RNE	19,893	67%	\$ 50,400	52
Subtotal (Recommended Measures with Interaction Effects)		25,785	87%	\$ 81,187	38

Evaluated Energy Conservation Measures

ECM 1: Town Hall – Insulate Attic

Existing Conditions

The attic is insulated with approximately 5.5 inches of loose cellulose. The cellulose is evenly distributed and no voids were found. While the insulation appears to be in good condition, there is not much of it – for comparison, current energy conservation code requires the equivalent of 14 inches of cellulose in attics.

Photo: The attic is insulated with approximately 5.5 inches of loose cellulose.

Photo: The insulation is evenly distributed and appears to be in good condition.

Analysis

Adding another 8 to 10 inches of cellulose would help further reduce winter heat loss through the ceiling as well as reducing summer heat gain. While cellulose is relatively inexpensive, the labor to install it is a significant portion of the cost. If labor costs could be reduced by using town employees, the cost could be reduced by roughly half.

Results

- Annual Energy Savings: 88 therms/year; 19 kWh/year
- Annual \$ Savings: \$115/year
- Cost: \$3,567 (\$1,705 in materials + \$1,862 in labor)
- Payback: 31 years
- GHG Emissions Reduction at NY Upstate Rate: 1,047 lb CO2/year (8.0% of total)

Recommended Action

Although the payback period is near the expected useful life of this measure (30 years), if labor costs can be reduced by using town employees, this could turn into a project with a more reasonable payback period. In addition, this measure will help reduce the thermal load on the building, which will make electrification less costly. For these reasons, this measure is recommended for consideration.

Add 8 to 10 inches of cellulose to the existing insulation. It is important to allow for adequate ventilation in the attic space, especially when increasing insulation depth. The Town Hall appears to rely on vents in the soffits to allow air into the attic and out through gable end vents. Install vent baffles and air seal around them at the soffits to ensure a clear pathway for outside air to enter the attic. Vent baffles also help to prevent the phenomenon of "wind washing" whereby loose insulation is blown back from the eaves of the attic by ventilation air entering through soffit vents. While installing vent baffles and air sealing around them, also take the opportunity to air seal the top plate of the exterior wall directly inside of the eaves. This can help reduce significant amounts of air infiltration into the attic at the joint where the wall meets the ceiling. Spray foam makes a very effective air barrier for this application.

ECM 2: Town Hall – Air Seal Penetrations

Existing Conditions

Three locations were found with potentially significant air leakage. One location was two 3 in. PVC conduit pipes that run from the basement straight into the attic. The conduits carry ethernet cable from the server room in the basement into the attic where they are then distributed to various locations. The two conduits are wide open and provide a very good path for air exfiltration from the conditioned space into the attic.

Another location was a large exhaust fan on the side of the building that is open to the courthouse on the lower level. It is not clear what this fan was originally intended to do, but it serves no purpose now and is a source of significant air infiltration.

The third major location was the attic hatch. This hatch, while properly fitted to its opening, is not weather-stripped or sealed in any way. The small gap around the entire opening can add up to a moderate amount of air leakage. In addition, the attic hatch is not insulated. While this does not in itself contribute to air leakage, it does increase conductive heat loss.

Photo: These two conduit pipes provide a significant air leakage path from the basement, through the conditioned space, into the attic.

Photo: This exhaust fan serves no purpose currently and allows for significant air leakage.

Photo: This attic hatch has no weather-stripping or insulation.

Analysis

The primary driver for air leakage is the wintertime "stack effect" where warmer, less dense interior air is pushed up and out of the building by cooler, more dense outside air. Because the density difference is dependent on height, openings near the bottom and top of the building have the greatest leakage potential. The three locations identified in this study are all at or near the bottom or top of the building's air boundary, and thus represent significant leakage.

Results

- Annual Energy Savings: 118 therms/year
- Annual \$ Savings: \$153/year
- Cost: \$350 (\$50 in materials + \$300 in labor)
- Payback: 2.3 years
- GHG Emissions Reduction at NY Upstate Rate: 1,398 lb CO2/year (11% of total)

Recommended Action

Seal both ethernet conduits at the top and bottom (i.e. in the basement and the attic) with either duct seal or foam plugs. Foam plugs have the benefit of being easily removable should additional cable need to be pulled in the future.

Seal the exhaust fan opening with a foam board plug and seal with silicone or urethane caulk. This also has the benefit of being reversible if a use for the exhaust fan is found in the future.

Seal the perimeter of the attic hatch opening with vinyl or foam weatherstripping. Add latches to the hatch to allow for a positive seal against the weatherstripping. Glue a 4 in. thick foam plug to the top of the attic hatch to provide some insulating value as well.

ECM 3: Town Hall – Setback Thermostats

Existing Conditions

While the minisplit system used for cooling and supplemental heat is essentially turned off or down at night to reduce energy consumption, the hydronic heating system is typically only turned down when someone remembers to do so. Because there is little visual or audial indication that the system is still at occupied temperature settings, this turndown tends to happen relatively infrequently.

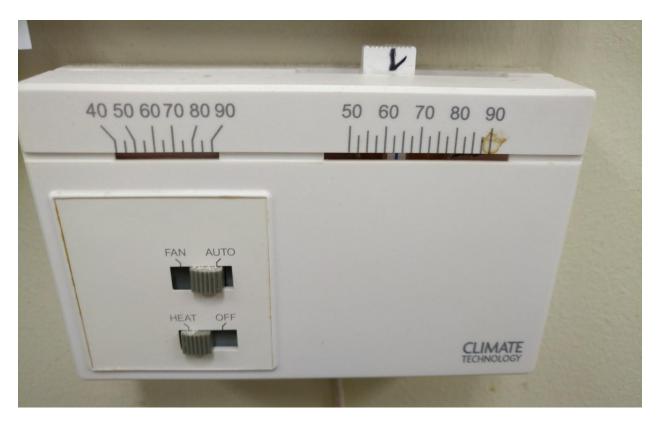


Photo: This manual thermostat is indicative of the control for the other two zones in the hydronic system.

Analysis

Replacing the manual thermostats with simple, 7-day programmable thermostats will remove the need to remember to turndown thermostats, and still allow for manual overrides for off-schedule events (e.g. late court sessions, town meetings, etc.). This is a very simple and straight-forward task, so costs are minimal. Although the recommended night setback temperature is 55 °F, due to the high thermal mass of the building, the actual interior temperature will take some time to drop to that setback temperature.

Calculations based on thermal mass estimates and hourly weather data indicate that the building will spend most of the heating season setback hours at higher temperatures than the recommended 55 °F setpoint. In fact, it appears that the average night setback temperature would be around 62 °F. Nonetheless, these same calculations estimate measurable savings which, combined with the relatively low capital cost, lead to a moderate payback period.

Results

- Annual Energy Savings: 70 therms/year
- Annual \$ Savings: \$91/year
- Cost: \$600 (\$450 in materials + \$150 in labor)
- Payback: 6.6 years
- GHG Emissions Reduction at Upstate NY Rate: 827 lb CO2/year (2.8% of total)

Recommended Action

Replace all three hydronic thermostats with 7-day programmable thermostats. Set "home" and "away" or "occupied" and "unoccupied" schedules based on normal daily schedules. Set "away" or "unoccupied" down to at least 55 °F to realize estimated savings. Lower setbacks are anticipated to have negligible additional savings. If the heat pump electrification measure is implemented, this measure will no longer be relevant. However, due to the low capital cost and short payback period, this measure would be a good one to implement while plans for the more expensive heat pump measure are made. After the heat pump system is installed, the programmable thermostats can still be used to provide emergency freeze protection using the gas fired equipment.

ECM 4: Town Hall – Install Tankless Electric Water Heater

Existing Conditions

The existing water heater is a very old (from 1977) tank style electric resistance water heater. Domestic hot water demands are relatively low for the facility having only two bathrooms with lavatory faucets only (i.e. no showers or kitchen sinks). The water heater is not reported to be having problems, but due to its age, the town is well advised to be prepared to replace it in the near future.

Photo: The Town Hall water heater is a very old electric resistance tank-style heater.

Analysis

Replacing the water heater with a tankless electric water heater would reduce electrical consumption by reducing the heat loss associated with a tank full of hot water. Due to the low hot water usage in the building, most of the energy consumed by the existing water heater is used to replace the heat lost to the surrounding basement from the tank itself. A tankless water heater heats water as it is being used and thus does not have the associated losses to the surroundings. The one drawback of tankless electric heaters is the large amount of electrical current they require when operating. To provide enough capacity for instantaneous use, an electrical service upgrade may be required. Although the energy cost savings are low and the associated payback period is long, this option is expected to be *less* expensive than a tank style water heater. Due to the age of the existing heater, this measure is still recommended in lieu of a tank style water heater.

Results

- Annual Energy Savings: 507 kWh/year
- Annual \$ Savings: \$37/year
- Cost: \$1,800 (\$600 in materials + \$1,200 in labor)
- Payback: 49 years
- GHG Emissions Reduction at NY Upstate Rate: 119 lb CO2/year (0.9% of total)

Recommended Action

Replace the existing water heater with a tankless on-demand electric heater. Evaluate instantaneous water heating needs and size the tankless unit appropriately. Evaluate the electrical capacity of the existing main service and consider whether an upgrade will be necessary. If an upgrade is necessary for other reasons (i.e. cold climate heat pump installation), then factor in the additional capacity needed for a tankless water heater as well.

ECM 5: Town Hall – Install Air Source Heat Pump

Existing Conditions

The Town Hall is currently heated primarily by a natural gas fired boiler with supplemental heat coming from four ductless heat pump systems. The boiler is nearing the end of it's expected useful life (25 years) and is beginning to exhibit performance and reliability problems. The ductless heat pump systems, while mostly newer, are still near the end of their expected useful lives (15 years) as well. In addition, these heat pumps are not "cold-climate" rated – their capacity diminishes rapidly at the typical low temperatures Newfield experiences in the winter. In addition to the performance and reliability issues, the boiler is the primary contributor to the Town Hall's stationary GHG emissions.

Photo: The natural gas fired boiler is nearing the end of its useful life and is exhibiting performance and reliability problems.

Photo: The ductless heat pumps are also nearing the end of their useful lives and are not rated for low temperature operation.

Analysis

Replacing the existing boiler and ductless heat pumps with a new, "cold-climate" rated ductless air source heat pump system would provide all of the functions of the existing system at a much higher efficiency and effectiveness as well as removing the sole source of site fossil fuel combustion (the existing boiler). While the initial capital outlay is estimated as \$34,200, when accounting for depreciation of the boiler (\$12,760) and heat pumps (\$16,000), the *net* cost (\$5,440) is recouped relatively quickly (7.7 years) with annual utility savings. This measure may also qualify for utility and/or NYSERDA rebates, which would further reduce the payback period.

Results

- Annual Energy Savings: 751 therms/year; -3,801 kWh/year
- Annual \$ Savings: \$705/year
- Cost: \$34,200 (\$20,500 in materials + \$13,700 in labor)
- Payback: 49 years
- GHG Emissions Reduction at NY Upstate Rate: 7,671 lb CO2/year (58% of total)

Recommended Action

Install a ductless air source heat pump system in place of the existing system. Ensure that the system being installed is "cold-climate" rated. A list of suitable models can be found at the following website:

https://ashp.neep.org/

The new system should be sized to provide at least 90% of the total heat load of the building at the ASHRAE design conditions for Newfield (6.1 °F).

ECM 6: Town Barn – Insulate Attic

Existing Conditions

The attic is insulated with approximately 8 inches of loose fiberglass. The fiberglass is not evenly distributed and appears dirty (fiberglass is bright white when clean), indicating air leakage through the ceiling into/out of the attic. The ceiling in all areas consists of corrugated sheet metal panels that are screwed to the roof trusses. This assembly is expected to have very high air leakage. While 8 inches is a significant amount of insulation, especially considering the size of the building, it is still well below the 14 in. required by current energy conservation code.

Photo: The attic is insulated with approximately 8 inches of loose fiberglass.

Photo: The insulation is not evenly distributed and appears dirty - indicating air leakage through the ceiling.

Analysis

Adding 8 inches of cellulose to the top of the fiberglass and evening out the variations in depth would add insulating value and also help reduce air leakage – loose cellulose being much more resistant to airflow than fiberglass. Reducing air leakage through the ceiling is important because air flowing through porous insulation dramatically reduces its insulating value as well as contributing to higher moisture loading in the attic and heat loss from the infiltration itself. Although the ideal situation would be to air seal the ceiling with sprayfoam, taped drywall, or some other similar method, cellulose is a much more cost effective option.

Results

- Annual Energy Savings: 219 therms/year
- Annual \$ Savings: \$289/year
- Cost: \$12,781 (\$6,110 in materials + \$6,671 in labor)
- Payback: 44 years
- GHG Emissions Reduction at NY Upstate Rate: 2,593 lb CO2/year (8.8% of total)

Recommended Action

Although the payback period is longer than the expected useful life of this measure (30 years), if labor costs can be reduced by using town employees, this could turn into a project with a reasonable payback period. In addition, this measure will help reduce the thermal load on the building, which will make electrification less costly. For these reasons, this measure is recommended for consideration.

Add 8 inches of cellulose to the existing insulation. While installing insulation, also take the opportunity to air seal the top plate of the exterior wall directly inside of the eaves. This can help reduce significant amounts of air infiltration into the attic at the joint where the wall meets the ceiling. Spray foam makes a very effective air barrier for this application.

ECM 7: Town Barn – Insulate Walls

Existing Conditions

The Town Barn walls are a combination of poured concrete, concrete block, and wood framed. The concrete walls are uninsulated, while the wood framed sections are skinned with corrugated sheet metal on both sides and appear to be insulated with fiberglass batt. These wood framed, metal skinned walls are leaky assemblies, and the insulation is not expected to be very effective. Although these walls exhibited higher interior temperatures than the concrete walls, the IR measurements on the high reflectivity, low emissivity aluminum panels likely inflate the actual difference in heat loss between the two walls.

Photo: The Town Barn walls are a combination of poured concrete, concrete block, and wood framed.

Photo: The wood framed, metal skinned wall section above appears 11 F warmer than the poured concrete wall below. However, the high reflectivity and low emissivity of aluminum and its close proximity to radiant heat sources make these readings less indicative than they would seem.

Analysis

Even though the wall area is less than half that of the ceiling, because of the much lower insulating value of the walls, heat loss is estimated to be about 2.5 times more than that through the ceiling. Insulating and air sealing these walls represent a significant energy savings. Because the walls are a combination of different materials, a foil faced polyisocyanurate foam board (Dow Thermax) was determined to be the most appropriate material.

Results

- Annual Energy Savings: 660 therms/year
- Annual \$ Savings: \$873/year
- Cost: \$15,406 (\$9,432 in materials + \$5,975 in labor)
- Payback: 18 years
- GHG Emissions Reduction at NY Upstate Rate: 7,834 lb CO2/year (27% of total)

Recommended Action

Install 2 in. of foil faced polyisocyanurate foam board on all exterior walls. Glue and/or screw the foam board to the interior face of the walls. Tape seams with approved foil mastic tape to maintain an adequate air and moisture barrier.

ECM 8: Town Barn – Install Air Curtains

Existing Conditions

The garage areas have five large rollup doors for vehicle and equipment access. These doors have been recently replaced and are very well insulated and weather sealed. However, when the doors are opened, large amounts of air exchange occur, rapidly filling the space with outside air during the cold winter months.

Photo: The Town Barn has five large rollup doors to allow vehicle and equipment access. These doors are well insulated and weather sealed, but allow large amounts of air exchange when open.

Analysis

Based on an average heating season outdoor temperature of 36 ^oF, the garage bays take an average of only 1.5 minutes to completely replace the entire volume of air in the space with outdoor air with the garage doors open. It is anticipated that the garage doors are open for longer than this, so that every period that doors are open completely replaces the entire volume of air in the garage bay. It is further assumed that the doors are only open twice per day, once in the morning and again in the evening. While this assumption likely does not hold every day, it appears to be a good average based on reported use and utility bill analysis.

Installing unheated air curtains above each door which would turn on when the door is open and turn off when it closes would help reduce air infiltration by an estimated 60%. Even though the infiltration rate is very high when the doors are open, the limited frequency of openings means that this measure has a relatively small effect on overall fuel usage.

Results

- Annual Energy Savings: 53 therms/year
- Annual \$ Savings: \$70/year
- Cost: \$38,600 (\$30,100 in materials + \$8,500 in labor)
- Payback: 551 years
- GHG Emissions Reduction at Upstate NY Rate: 629 lb CO2/year (2.1% of total)

Recommended Action

Because of the high cost and low savings of this measure, this is not a recommended action to take. Although the assumption on how many door openings occur each day will affect the cost effectiveness of this measure, it is estimated it would take over 70 door openings per day to give this a 15 year payback period, which seems to be beyond the realm of reason.

ECM 9: Town Barn – Setback Thermostats

Existing Conditions

The Town Barn is split into four heating zones – two heated by the hydronic boiler, and two heated by separate gas-fired unit heaters. Each zone is controlled by a separate thermostat. The garage spaces are kept at 60 °F, and the office spaces are kept at 65 °F during occupied and unoccupied periods (i.e. no setbacks).

Photo: The Town Barn is split into four heating zones – two heated by the hydronic boiler, and two heated by separate gas-fired unit heaters.

Analysis

Replacing the manual thermostats with simple, 7-day programmable thermostats will allow setbacks to be made automatically, and still allow for manual overrides for offschedule events (e.g. plowing season work, emergency repairs, etc.). This is a very simple and straight-forward task, so costs are minimal. Although the recommended night setback temperature is 50 °F, due to the high thermal mass of the building, the actual interior temperature will take some time to drop to that setback temperature. Calculations based on thermal mass estimates and hourly weather data indicate that the building will spend most of the heating season setback hours at higher temperatures than the recommended 50 °F setpoint. In fact, it appears that the average night setback temperature would be around 58 °F. Nonetheless, these same calculations estimate

substantial savings which, combined with the relatively low capital cost, lead to a short payback period.

Results

- Annual Energy Savings: 202 therms/year
- Annual \$ Savings: \$262/year
- Cost: \$800 (\$600 in materials + \$200 in labor)
- Payback: 3.1 years
- GHG Emissions Reduction at Upstate NY Rate: 2,396 lb CO2/year (8.1% of total)

Recommended Action

Replace all four hydronic thermostats with 7-day programmable thermostats. Set "home" and "away" or "occupied" and "unoccupied" schedules based on normal daily schedules. Set "away" or "unoccupied" down to at least 50 °F to realize estimated savings. Lower setbacks are anticipated to have negligible additional savings. If the heat pump electrification measure is implemented, this measure will no longer be relevant. However, due to the low capital cost and short payback period, this measure would be a good one to implement while plans for the more expensive heat pump measure are made. After the heat pump system is installed, the programmable thermostats can still be used to provide emergency freeze protection using the gas fired equipment.

ECM 10: Town Barn – Install Electric Tankless Water Heater

Existing Conditions

The existing water heater is a tank style indirect heater using the gas fired boiler to heat the domestic hot water. Domestic hot water demands are relatively low for the facility having only one breakroom sink and two bathrooms with lavatory faucets only (i.e. no showers).

Photo: The Town Barn water heater uses this boiler to heat the water.

Analysis

Replacing the water heater with a tankless water heater would displace gas consumption by using electricity instead. The tankless water heater would also eliminate the heat loss associated with a tank full of hot water. Due to the low hot water usage in the building, most of the energy consumed by the existing water heater is used to replace the heat lost to the surrounding basement from the tank itself. A tankless water heater heats water as it is being used and thus does not have the associated losses to the surroundings. The one drawback of tankless electric heaters is the large amount of electrical current they require when operating. To provide enough capacity for instantaneous use, an electrical service upgrade may be required. Although the energy cost savings are low and the associated payback period is long, this option is expected to be *less* expensive than a tank style water heater. Because the town is focused on electrifying their buildings, this measure is still recommended for implementation.

Results

- Annual Energy Savings: 202 therms/year; -217 kWh/year
- Annual \$ Savings: \$248/year
- Cost: \$1,800 (\$600 in materials + \$1,200 in labor)
- Payback: 7.2 years
- GHG Emissions Reduction at NY Upstate Rate: 2,344 lb CO2/year (8.0% of total)

Recommended Action

Replace the existing water heater with a tankless on-demand electric heater. Evaluate instantaneous water heating needs and size the tankless unit appropriately. Evaluate the electrical capacity of the existing main service and consider whether an upgrade will be necessary. If an upgrade is necessary for other reasons (i.e. cold climate heat pump installation), then factor in the additional capacity needed for a tankless water heater as well.

ECM 11: Town Barn – Install Air Source Heat Pump

Existing Conditions

The Town Barn is heated by a gas fired boiler with hydronic fan coils and two gas fired unit heaters. While the boiler is relatively new (built in 2015), the unit heaters are both over 10 years old and have an expected useful life of 15 years. This equipment is the primary contributor to site GHG emissions at the barn, accounting for about 80% of site emissions.

Photo: The Town Barn is heated by a gas fired boiler and two gas fired unit heaters.

Analysis

Replacing the existing boiler and unit heaters with a new, "cold-climate" rated ductless air source heat pump system would provide heating for the space at a much higher efficiency as well as removing the sources of site fossil fuel combustion. An additional benefit of this system is its ability to provide summertime cooling. For this analysis, only the costs of heating were considered (using the system for cooling was estimated to reduce cost savings by about 20%). While the initial capital outlay is estimated as \$50,400, when accounting for depreciation of the boiler (\$6,440) and unit heaters (\$10,120), the *net* cost (\$33,840) is significantly less. This measure may also qualify for utility and/or NYSERDA rebates, which may further reduce the payback period to a reasonable level.

Results

- Annual Energy Savings: 1,979 therms/year; -15,255 kWh/year
- Annual \$ Savings: \$961 /year
- Cost: \$33,840 (\$30,200 in materials + \$20,200 in labor)
- Payback: 52 years
- GHG Emissions Reduction at Upstate NY Rate: 19,893 lb CO2/year (67% of total)

Recommended Action

Install a ductless air source heat pump system in place of the existing system. Ensure that the system being installed is "cold-climate" rated. A list of suitable models can be found at the following website:

https://ashp.neep.org/

The new system should be sized to provide at least 90% of the total heat load of the building at the ASHRAE design conditions for Newfield (6.1 °F).

5. APPENDIX DATA

Town Hall Equipment & Lighting

										1	
Heating and Air Conditioning Equipment											
	Unit Type	Qty	Make/Model	Heating kBtuh	Rated Heating Eff.	Cooling Capacity	Units	EER	Serves/Location	Year	
	Boiler	1	Laars/JVH125	125	82%		Whole Building 2000			1	
	Minisplit	1	Fujitsu/AOU9RLFW	12	322%	9	kbtuh	13.8	Downstairs Office	2008	1
	Minisplit	1	Fujitsu/AOU30RLX	32	278%	30	kbtuh	10.0	Courtroom	2008	1
	Minisplit	1	Fujitsu/AOU36RML1	42	264%	36	kbtuh	8.8	Meeting Room	2008	1
	Minisplit	1	Mitsubishi/PUGH24	24	261%	25	kbtuh	9.0	Clerk's Office	2000	
		-]
					Domestic	Hot Water]
	Unit Type Qty Make/Model Capacity Units Fuel Type Storage Capacity (gal.) Eff. Serves/Location Year										
	Storage	1	State/CV 42	9	kW	Electricity	42	100%	Whole Building	1977	1
					Interior Lig	nting Fixtures					
	Existing Fixtures					Recommended	Recommended Interi	ior Lightii	ng Efficiency Improvements		
Line #	Area	Qty	Present Lighting Type	Lamps /fixt	Watts /Fixt	Control Type	Measure Type	Qty	Proposed Lighting Type	Lamps /fixt	Watts /Fixt
1	1st Flr Entry	3	2' LED tube 1150 lu. 7W	2	14	No Change	No change	3	2' LED tube 1150 lu. 7W	2	14
2	1st Fir Super	5	4' LED T8 2200 lu. 17W	4	68	No Change	No change	5	4' LED T8 2200 lu. 17W	4	68
3	1st Flr Meeting Rm	9	4' LED T8 2200 lu. 17W	4	68	No Change	No change	9	4' LED T8 2200 lu. 17W	4	68
4	1st Fir Clerk	10	4' LED T8 2200 lu. 17W	4	68	No Change	No change	10	4' LED T8 2200 lu. 17W	4	68
5	Basement Entry	3	2' LED tube 1150 lu. 7W	2	14	No Change	No change	3	2' LED tube 1150 lu. 7W	2	14
6	Basement Office	2	4' LED T8 2200 lu. 17W	4	68	No Change	No change	2	4' LED T8 2200 lu. 17W	4	68
7	Basement Foyer	1	4' LED T8 2200 lu. 17W	4	68	No Change	No change	1	4' LED T8 2200 lu. 17W	4	68
8	Basement Storage	2	4' LED T8 2200 lu. 17W	4	68	No Change	No change	2	4' LED T8 2200 lu. 17W	4	68
9	Basement Court	12	4' LED T8 2200 lu. 17W	4	68	No Change	No change	12	4' LED T8 2200 lu. 17W	4	68
10	Basement Womens Basement Mens	1	4' LED T8 2200 lu. 17W 4' LED T8 2200 lu. 17W	4	68 68	No Change	No change	1	4' LED T8 2200 lu. 17W 4' LED T8 2200 lu. 17W	4	68
11	Basement Mech	2	4' LED T8 2200 lu. 17W	4		No Change No Change	No change	2	4' LED T8 2200 lu. 17W	4	68
12	basement wech	2	4 LED 18 2200 IU. 17 W	4	00	No change	No change	2	4 LED 18 2200 IU. 17W	4	00
					Exterior Lig	hting Fixtures					
	Existing Fixtures					Recommended	Lighting Efficiency In	nprovem	ents		
Line #	Area	Qty	Present Lighting Type	Lamps /fixt	Watts /Fixt	Control Type	Measure Type	Qty	Proposed Lighting Type	Lamps /fixt	Watts /Fixt
1	Front Entrance	2	LED area light, 28W	2	56	No Change	No change	2	LED area light, 28W	2	56
2	Rear Entrance	2	LED area light, 28W	2	56	No Change	No change	2	LED area light, 28W	2	56
3	Sidewalls	2	LED wallpack, 20W	1	20	No Change	No change	2	LED wallpack, 20W	1	20

3

4

5

6

Line #

1

2

3

N Garage Bays

E Garage Bays

S Garage Bays

S Garage Bays

Existing Fixtures

Area

Wall Packs

Pole Lights

Flood Lights

36

48

4

Qty

2

2

2

Town Barn Equipment & Lighting

4' LED T8 2200 lu. 17W

4' LED T8 2200 lu. 17W

13 4' LED fixture 4500 lu. 42w

4' LED T8 2200 lu. 17W

Present Lighting Type

LED Medium Flood, 2,461

LED area light, 75W

LED area light, 100W

Heating and Air Conditioning Equipment											
	Unit Type	Qty	Make/Model	Heating kBtuh	Rated Heating Eff.	Cooling Capacity	Units	EER	Serves/Location	Year	
	Boiler	1	Weil McLain	155	95%				Offices/N Garage Bays	2015	1
Gas F	ired Unit Heater	1	Modine/HD 125A	125	80%				E Garage Bays	2010	1
Gas F	ired Unit Heater	1	Modine/HD 100A	100	80%				S Garage Bays	2011	1
Domestic Hot Water											
	Unit Type	Qty	Make/Model	Capacity	Units	Fuel Type	Storage Capacity	Eff.	Serves/Location	Year	1
			-		1 1		(gal.)		- 10		-
U	Infired Tank	1	Bradford White/SW240RL	157	kBtuh	NA	38	NA	Offices	2014	
Interior Lighting Fixtures											
	Existing Fixtures					Recommended	Recommended Interi	or Lightii	ng Efficiency Improvements		
Line #	Area	Qty	Present Lighting Type	Lamps /fixt	Watts /Fixt	Control Type	Measure Type	Qty	Proposed Lighting Type	Lamps /fixt	V
1	Offices	5	4' LED T8 2200 lu. 17W	4	68	No Change	No change	5	4' LED T8 2200 lu. 17W	4	
2	Offices	38	4' LED T8 2200 lu. 17W	2	24	No Change	No change	38	4' LED T8 2200 lu. 17W	2	1

34 No Change

34 No Change

42 No Change

34 No Change

75 No Change

100 No Change

40 No Change

Recommended

Control Type

Exterior Lighting Fixtures

Watts /Fixt

No change

No change

No change

No change

36

48

13

4

Qty

2

2

2

Lighting Efficiency Improvements

Measure Type

No change

No change

No change

4' LED T8 2200 lu. 17W

4' LED T8 2200 lu. 17W

4' LED T8 2200 lu. 17W

4' LED fixture 4500 lu. 42w

Proposed Lighting Type

LED Medium Flood, 2,461 lu.

LED area light, 75W

LED area light, 100W

2

2

1

2

Lamps /fixt

1

1

1

34

34

42

34

Watts

/Fixt

75

100

40

2

2

1

2

Lamps

/fixt

1

1

1

ECM-1 Calculations

CALCULATIONS TO INSULATE ATTIC

ECM-1 Town of Newfield

INPUT DATA:

Surface to be insulated:	Roof	Walls			
Area:	1,740	2,058	sq ft		
Present R value:	20.3	10.6			
Revised R value	50.1	10.6			
Present U factor::	0.049	0.095	Btuh/sq ft-deg F		
Revised U factor:	0.020	0.095	Btuh/sq ft-deg F		
Present U x Area	86	195		280	UA Total present
Proposed U x Area	35	195		229	UA Total proposed

CALCULATIONS:	Occupied	Unoccupied	Fuel Data	Heating	Cooling
Heating Setpoint:	68	62	Type:	Natural Gas	Electricity
Cooling Setpoint:	72	72	Units:	therm	kwh
Q internal gains (Btuh):	13,002	1,885	Unit cost:	\$ 1.299	\$ 0.06
BLC (Btuh/degree F):	576	678	BTU/unit	100,000	3,412
T Balance (°F.):	45.4	59.2	Efficiency/ COP:	81.6%	2.93
T Balance = T Setpoint - (Q in	ternal gains / BLC)		EER:		10.0

Bin Mid-Pt.	Occupied	Unoccupied	Change in Occupied	Change in Unoccupied	Heating Savings	Cooling
DIT WIG-PL	Hours		Heat Loss	Heat Loss	therm	Savings kwh
(7.5)	0	1	3,844	3,539	0	0
(2.5)	0	7	3,589	3,284	0	0
2.5	1	19	3,335	3,029	1	0
7.5	2	31	3,080	2,775	1	0
12.5	9	94	2,826	2,520	3	0
17.5	37	270	2,571	2,266	9	0
22.5	73	390	2,317	2,011	12	0
27.5	84	487	2,062	1,757	13	0
32.5	136	586	1,807	1,502	14	0
37.5	217	770	1,553	1,247	16	0
42.5	141	628	1,298	993	10	0
47.5	194	642	0	738	6	0
52.5	185	436	0	484	3	0
57.5	147	567	0	229	2	0
62.5	264	757	0	0	0	0
67.5	239	456	0	0	0	0
72.5	177	240	(25)	(25)	0	1
77.5	144	159	(280)	(280)	0	8
82.5	88	71	(535)	(535)	0	9
87.5	2	9	(789)	(789)	0	1
92.5	0	0	(1,044)	(1,044)	0	0
97.5	0	0	(1,298)	(1,298)	0	0
102.5	0	0	(1,553)	(1,553)	0	0
107.5	0	0	(1,807)	(1,807)	0	0
	8,760	hours		Energy Savings:	88	19

\$	114	

\$ 1.2

	NY Upstate	
Natural Gas Emissions Rates	11.86	lb CO₂/therm
Natural Gas Emissions Savings	1,043	lb CO₂/yr
Electricity Emissions Rates	235	lb CO₂/MWh
Electricity Emissions Savings	4	lb CO ₂ /yr
Total Emissions Savings	1,047	lb CO₂/yr
	8.0%	

IMPLEMENTATION COST & PAYBACK PERIOD:

	Material	Labor		
Item	(\$ / sq ft)		Quantity	Total
Roof	\$ 0.98	\$ 1.07	1,740	\$ 3,567
	1,705	1	,862	
Implementatio	on Cost:		\$ 3,567	= 30.9 year paybac
Annual Energy	/ Savings:		\$ 115	-

ECM-2 Calculations

CALCULATIONS FOR AIR SEAL PENETRATIONS

ECM-2 Town of Newfield

INPUT DATA:

Opening		Conduit	Exhaust Fan	Attic Hatch	Total
Equivalent Diameter	(in)	3.0	12.0	2.5	
Free Area	(%)	90%	25%	100%	
Relative Height	(ft)	18	8	8	
Qty		2	1	1	
Average Infiltration Occupied	(cfm)	30	45	8	83
Average Infiltration Unoccupied	(cfm)	25	37	7	69
Infiltration Reduction	(%)	90%	90%	80%	89%

CALCULATIONS:

Infiltration = 5.21 x Opening Area x [Height Difference x (Inside Temp - Outside Temp) / Inside Temp (absolute)] ^ 1/2 Energy Savings = (Present Leakage - New Leakage) x Accum Hours x Temp Difference x CF2 Energy Cost Savings = (Energy Savings / CF1) x (Unit cost / Efficiency)

	Occupied	Unoccupied	
T Setpoint:	68	62	°F
Q internal gains:	13,002	1,885	Btuh
BLC:	576	678	Btuh/°F
T Balance:	45.4	59.2	°F. T Balance = T Setpoint - (Q internal gains / BLC)
Bin Data for Elmira, 41 hrs./week			
Accumulated Hours	700	4,928	below balance temp.
Avg. OAT	33.3	38.3	°F below balance temp.
(T Set- Avg OAT)	34.7	23.7	°F difference
Type:	Natural Gas		
Units:	therm		
Unit cost:	\$ 1.299	/therm	
CF1	100,000	Btu/therm	
Efficiency:	82%		
CF2	0.018	Btu/hr-°F-cfh	

	Energy Sav	vings - Btu/year		Total	Savings
	Occupied	therm / yr	Ş		
Infiltration Reduction	1,931,600	7,688,000	9,619,600	118	\$ 153

	NY Upstate	
Natural Gas Emissions Rates	11.86	lb CO₂/therm
Natural Gas Emissions Savings	1,398	lb CO₂/yr
Electricity Emissions Rates	235	lb CO₂/MWh
Electricity Emissions Savings	0	lb CO ₂ /yr
Total Emissions Savings	1,398	lb CO₂/yr
	11%	

IMPLEMENTATION COST & PAYBACK PERIOD:

	Materials	Labor	Total	Savings	
Item	(\$)	(\$)	(\$)	(\$)	
Sealing Conduit	\$ 10.00	\$ 120.00	\$ 130	\$ 56	= 2.3 year payback
Covering Exhaust Fan	\$ 30.00	\$ 120.00	\$ 150	\$ 83	= 1.8 year payback
Attic Hatch	\$ 10.00	\$ 60.00	\$ 70	\$ 15	= 4.8 year payback
		Totals:	\$ 350	\$ 153	= 2.3 year payback

ECM-3 Calculations

CALCULATIONS TO IMPLEMENT DEEPER SETBACK

EEM-3 Town of Newfield

INPUT DATA:		100%	of Building to be	Setback		
			Current	Proposed		
Heating T Setpo	pint:	Occupied	68	68	deg. F.	
		Unoccupied	62	55	deg. F.	
Cooling T Setpo	pint:	Occupied	72	72	deg. F.	
		Unoccupied	72	72	deg. F.	
HVAC Schedule		Occupied	41.0	41.0	Hours per week	
		Unoccupied	127.0	127.0	Hours per week	
Q internal gair	ns:	Occupied	13,002	13,002	Btuh	
		Unoccupied	1,885	1,885	Btuh	
Q internal gair	ns:	Schedule	41	41	Hours per week	
BLC:		Occupied	576	576	Btuh/deg. F.	
(excludes DOA	S)	Unoccupied	678	678	Btuh/deg. F.	
Heating T Actua	al	Occupied	68	68		
(w/ thermal ma		Unoccupied	64	62		
		Fuel Data	Heating	Cooling	1	
		Type:	Natural Gas	Electricity	Economizer?	
		Units:	therm	kwh	No	
		Unit cost:	\$ 1.299	\$ 0.06		
		BTU/unit	100,000	3,412		
	Ef	ficiency/ COP:	79.8%	4.25	Avg. COP. EER:	14.5
CALCULATIONS	5:			100.0%	of bldg. is cooled	t i
Current		Elmira, 41 hrs	./week			
	Occupied	Unoccupied	Occ Net Heat	Unocc Net Heat	Heating Fuel	
Bin Mid Pt.	Hours	Hours	Loss BTUH	Loss BTUH	Use therm	Cooling Energy kwh
(7.5)	0	1	0	45,964		0
(2.5)	0	7	0	42,903	4	0
2.5	1	19	34,920	19,200	5	0
7.5	2	31	31,871	37,205	15	0
12.5	9	94	29,851	34,124	44	0
17.5	37	270	27,222	30,493	116	0
22.5	73	390	24,862	27,134	155	0
27.5	84	487	22,778	24,323	172	0
32.5	136	586	20,000	21,530	192	0
37.5	217	770	17,259	18,297	224	0
42.5	141	628	13,492	14,561	138	0
47.5	194	642	8,062	9,786	98	0
52.5	185	436	8,516	8,100	64	0
57.5	147	567	5,856	4,853	45	0
62.5	264	757	2,612	1,144	19	0
67.5	239	456	179	62	1	0
72.5	177	240	(1,162)	(1,137)	0	33
77.5	144	159	(3,114)	(3,674)	0	71
82.5	88	71	(6,024)	(7,186)	0	72
87.5	2	9	(8,513)	(10,727)	0	8
92.5	0	0	0	0	0	0
97.5	0	0	0	0	0	0
102.5 107.5	0	0	0	0	0	0
107.5	-		U	U		
	8,760	nours			1,294	184

EEM-3	Town of I	Newfield				
Proposed		Elmira, 41 hrs	./week			
Bin Mid Pt.	Occupied	Unoccupied	Occ Net Heat	Unocc Net Heat	Heating Fuel	Cooling Energy kwl
(7.5)	0	1	0	43,795	1	(
(2.5)	0	7	0	41,134	4	(
2.5	1	19	31,718	17,610	5	(
7.5	2	31	28,271	35,318	14	(
12.5	9	94	26,991	31,740	40	(
17.5	37	270	25,896	28,296	108	(
22.5	73	390	24,028	25,053	144	(
27.5	84	487	22,308	22,455	161	
32.5	136	586	19,557	20,142	181	
37.5	217	770	16,906	17,359	214	
42.5	141	628	13,313	13,907	133	
47.5	194	642	7,947	9,354	95	
52.5 57.5	185 147	436 567	8,393	7,766	62 44	(
62.5	264	757	5,694 2,549	4,692	19	
67.5	239	456	2,349	60	19	
72.5	177	240	(1,164)	(1,137)	0	33
72.5	144	159	(3,114)	(3,674)	0	71
82.5	88	71	(6,024)	(7,186)	0	72
87.5	2	9	(8,513)	(10,727)	0	
92.5	0	0	(8,515)	(10,727)	0	
97.5	0	0	0	0	0	
102.5	0	0	0	0	0	
102.5	0	0	0	0	0	
107.5	-	hours	U	U	1,224	184
	8,700	nours			1,224	104
			Present	Proposed	Savings	
		Heating	1,294	1,224	34Virigs 70	therm
		Cooling	1,294	1,224	(0)	kwh
		Annual Energy		104	\$ 91	NVU
		Annual Energy	Ş		2 9 I	
			NV Linetate			
		in in pater	NY Upstate	IL CO. Alterna		
		nissions Rates		lb CO₂/therm		
		ssions Savings		lb CO₂/yr		
	-	nissions Rates		lb CO ₂ /MWh		
Ele		ssions Savings		lb CO₂/yr		
	Total Emis	ssions Savings		lb CO₂/yr		
			2.8%			
MPLEMENTAT	ION COST &	PAYBACK PERIC	DD:			
		Material				
Item		\$/unit	Labor \$/unit	Quantity	Total	
7-day thermos	stat	\$ 150	\$ 50	3	\$ 600	
					\$ 0	
					\$ 600	
	Implementa				= 6.6 year payb	ack
	Annual Ener	rov Savings:		\$91		

ECM-4 Calculations

CALCULATIONS TO INSTALL A TANKLESS WATER HEATER

ECM-4 Town of Newfield

INPUT DATA:

	Present Fuel		Proposed Fuel			
Fuel:	Electricity		Electricity	-		
Units:	kwh		kwh			
Fuel Cost:	\$ 0.06	per kwh	\$ 0.06	per kwh		
BTU / unit:	3,412	Btu per kwh	3,412	Btu per kwh		
kW Demand cost:	\$ 9.43	per kW	\$ 9.43	per kW		
Average kW demand:	0.2	kW	0.1	kW		
Demand Diversity:	33%		33%			
Net kW Demand Savings:	0.1	kW per month	0.0	kW per month		
Months of demand:	12	per year	0	per year		
Annual DHW Consumption:	Present		Proposed			
Hot Water Usage:		Gallons/person/day		Gallons/person/da (estimate)	ау	
Number of persons: Days of Usage:		(estimate) per year		per year		
Hours of Usage per Day:		hours		hours		
Average inlet water Temp:		degrees F		degrees F		
Average hot water temp:		degrees F		degrees F		
Storage Tank Losses:	Present Tank	Phy/CE/Marrie	Proposed Tank	Phy/CE/Harra		
Tank U factor:		Btu/SF/Hour		Btu/SF/Hour		
Height of Tank: Diameter of Tank:		inches inches		inches inches		
Diameter of Tank:		gallons/tank		gallons/tank		
# of Tanks		Qty.		Qty.		
Hours Tank is Hot:		Hours	8,760			
Water Temperature:	· · · · · ·	Deg. F.	125			
Ambient Temperature:		Deg. F.	65			
		-				
Recirculation Losses:		of boiler capacity =		BTUh		
	8,760	hours/year	8,760	hours/year =	100%	
Boiler Jacket & Flue Losses:						
Burner Input	40,000	BTUH	44,360	BTUH		
Efficiency:	100.0%		100.0%			
Boiler Output Capacity	40,000	BTU output	44,360	BTU output		
Jacket & Flue Losses:	0.0%	of boiler capacity	0.0%	of boiler capacity		
Boiler is Hot:	8,760	hours/year	8,760	hours/year =	100%	
CALCULATIONS:						
CALCOLATIONS.	Present		Proposed			
Concumption Energy		BTU output rqd/yr		BTU output rgd/yr		
Consumption Energy: Tank Energy Losses:	1,729,995			BTU/year		
Recirculation Losses:		BTU/year		BTU/year		
Boiler Jacket Losses:		BTU/year		BTU/year		
Output BTU/Year	2,471,124	broyyear	741,129	broyyear		
Superbroyrea	_, ., _, _2					
Annual Fuel Consumption	724	kwh	217	kwh		
Demand		billed kW /yr.		kW		
Annual Fuel Cost	\$ 50	1111	\$ 13			
Annual Savings:		kwh		per year		
_	0					
	1	billed kW /yr.				
		NY Upstate				
Natural Gas	Emissions Rates	11.86	lb CO ₂ /therm			
Natural Gas Er	missions Savings	0	lb CO₂/yr			
Electricity	Emissions Rates	235	lb CO₂/MWh			
Electricity Er	missions Savings	119	lb CO ₂ /yr			
Total Er	missions Savings	119	lb CO₂/yr			
		0.9%				
IMPLEMENTATION COST & PAYBACK PERIC	DD:					
Item	Quantity	Material Costs	Labor Costs	Total		
Item	Quantity		Labor Costs	Total	-	
Tankless Electric Water Heater	1	\$ 600	\$ 1,200	\$ 1,800		
-	Implementation				_ = 48.5	year payback
	Annual Energy Sa	vings:		\$ 37		

ECM-5 Calculations

CALCULATIONS TO REPLACE HVAC SYSTEM with DUCTLESS HEAT PUMP EEM-5 Town of Newfield

INPUT DATA

INFOLDATA								
Present HVAC system:	Present Fuels	s Type:	Units:	Unit cost:	BTU/unit	COP	Rated at	EER
Non-Condensing Boiler	Heating 1	Natural Gas	therm	\$ 1.299	100,000	0.816	Et	
non-heat pump	Heating 2	Electricity	kwh	\$ 0.061	3,412	3.000		
100% of the building	Cooling	Electricity	kwh	\$ 0.061	3,412	2.931	95° OAT	10.0
Proposed HVAC system:	Proposed Fu	el Type:	Units:	Unit cost:	BTU/unit	COP	Rated at	EER
Ductless Heat Pump	Heating 1	Electricity	kwh	\$ 0.061	3,412	4.000	47° OAT	
heat pump	Heating 2	ambient air		\$ 0.000	0			
Below (8) °F. OA Temp	Cooling	Electricity	kwh	\$ 0.061	3,412	3.810	95° OAT	13.0
All heat is provided by	Heating 2 Lov	N		\$ 0.000	0			

HVAC Loa system)	ıds (excludin	g any DOAS		Present HV	AC system: N	on-Condens	ing Boiler	-		Proposed H	IVAC syste	m: Ductles	s Heat Pump	
Bin Mid Pt.	Occupied Hours	Occ Net Heat Loss BTUH	Heating 1 Et or COP Natural Gas	Heating 2 Et or COP Electricity	Cooling COP Electricity	Heating 1 Natural Gas therm	Heating 2 Electricity kwh	Cooling Electricity kwh	Heating 1 Et or COP Electricity	Heating 2 Et or COP ambient air	Cooling Et or COP Electricity	Heating 1 Electricity kwh	Heating 2 ambient air	Cooling Electricity kwh
(Outdoor temp +/- 2.5 °F)	(Hrs/yr at this outdoor temp during occupied times)	BLC x (Indoor - Outdoor temp) - Internal Gains	(Present heating system efficiency)	(NA)	(Present cooling system efficiency)	Heat Loss / Efficiency x Hrs/yr (in therms)	(NA)	Heat Gain / Efficiency x Hrs/yr (in kWh)	(Proposed heating system efficiency)	(NA)	(Proposed cooling system efficiency)	Heat Loss / Efficiency x Hrs/yr (in kWh)	(NA)	Heat Gain / Efficiency x Hrs/yr (in kWh)
(7.5)	0	30,504	0.82	1.57		0	0	0	2.10	0.00		0	0	0
(2.5)	0	27,623	0.82	1.66		0	0	0	2.21	0.00		0	0	0
2.5	1	24,742	0.81	1.75		0	1	0	2.34	0.00		3	0	0
7.5	2	21,861	0.81	1.86		0	1	0	2.48	0.00		5	0	0
12.5	9	18,980	0.81	1.98		2	5	0	2.64	0.00		19	0	0
17.5	37	16,098 13.217	0.81	2.11		6 10	16 25	0	2.81	0.00		62 94	0	0
22.5	73	13,217	0.81	2.25		10	25	0	3.00	0.00		94	0	0
32.5	136	7,455	0.80	2.40		10	21	0	3.42	0.00		87	0	0
37.5	217	4,574	0.80	2.30		10	23	0	3.65	0.00		80	0	0
42.5	141	1.692	0.79	2.92		2	5	0	3.90	0.00		18	0	0
47.5	194	1,052	0.75	2.32		0	0	0	5.50	0.00		10	0	0
52.5	185	(1.765)			5.6	0	0	17		0.00	6.8	0	0	14
57.5	103	(4,646)			5.2	0	0 0	38		0.00	6.2	0	0	32
62.5	264	(7,527)			4.9	0	0	120		0.00	5.8	0	0	101
67.5	239	(10,409)			4.5	0	0	161		0.00	5.3	0	0	137
72.5	177	(13,290)			4.2	0	0	164		0.00	4.9	0	0	141
77.5	144	(16,171)			3.9	0	0	175		0.00	4.5	0	0	151
82.5	88	(19,052)			3.6	0	0	137		0.00	4.2	0	0	118
87.5	2	(21,933)			3.3	0	0	4		0.00	3.8	0	0	3
92.5	0	(24,815)			3.0	0	0	0		0.00	3.6	0	0	0
97.5	0	(27,696)			2.8	0	0	0		0.00	3.3	0	0	0
102.5	0	(30,577)			2.5	0	0	0		0.00	3.1	0	0	0
107.5	0	(33,458)			2.5	0	0	0		0.00	3.1	0	0	0

		Unocc Net	Heating	Heating		Heating 1	Heating 2	Cooling	Heating 1 Et	Heating 2 Et	Cooling Et	Heating 1		Cooling
Bin Mid	Unoccupied	Heat Loss	Eff./COP	Eff./COP	Cooling Eff.	Natural Gas	Electricity	Electricity	or COP	or COP	or COP	Electricity	Heating 2	Electricity
Pt.	Hours	BTUH	Electricity	Electricity	EER	therm	kwh	kwh	Electricity	ambient air	Electricity	kwh	ambient air	kwh
	(Hrs/yr at	BLC x (Indoor -	Electricity	Electricity		unerm	KWH	KWN	Electricity	ampientair	Electricity			KWN
(Outdoor	this outdoor	Outdoor	(Present		(Present	Heat Loss /		Heat Gain /	(Proposed		(Proposed	Heat Loss		Heat Gain /
			heating	(21.4)	cooling	Efficiency x		Efficiency x	heating	(1)	cooling		(114)	Efficiency x
temp +/-	temp during	temp) -	system	(NA)	system	Hrs/yr	(NA)	Hrs/yr	system	(NA)	system	Efficiency	(NA)	Hrs/yr
2.5 °F)	unoccupied	Internal	efficiency)		efficiency)	(in therms)		(in kWh)	efficiency)		efficiency)	x Hrs/yr		(in kWh)
	times)	Gains										(in kWh)		
(7.5)	1	45,231	0.82	3.00		0	1	0	2.10	0.00		6	0	0
(2.5)	7	41,842	0.82	3.00		3	6	0	2.21	0.00		39	0	0
2.5 7.5	19	38,452	0.81	3.00 3.00		11	14	0	2.34	0.00		92 128	0	0
12.5	31	35,062	0.81				21	0	2.48	0.00		331	0	
12.5	94 270	31,673 28,283	0.81	3.00 3.00		29 76	58 148	0	2.64	0.00		796	0	0
22.5	390	28,283	0.81	3.00		76 97	148	0	3.00	0.00		949	0	0
22.5	487	24,894	0.80	3.00		105	203	0	3.20	0.00		949	0	0
32.5	487	18,114	0.80	3.00		105	205	0	3.42	0.00		939	0	0
37.5	770	14,725	0.80	3.00		107	203	0	3.65	0.00		910	0	0
42.5	628	11,335	0.79	3.00		72	138	0	3.90	0.00		535	0	0
47.5	642	7,945	0.75	3.00		53	99	0	4.16	0.00		359	0	0
52.5	436	4,556	0.76	3.00		21	38	0	4.44	0.00		131	0	0
57.5	567	1,166	0.74	3.00		7	13	0	4.73	0.00		41	0	0
62.5	757	0	0.74	5.00		0	0	0	4.75	0.00		0	0	0
67.5	456	0				0	0	0		0.00		0	0	0
72.5	240	(2,224)			4.2	0	0	37		0.00	4.9	0	0	32
77.5	159	(5,613)			3.9	0	0	67		0.00	4.5	0	0	58
82.5	71	(9.003)			3.6	0	0	52		0.00	4.2	0	0	45
87.5	9	(12,393)			3.3	0	0	10		0.00	3.8	0	0	9
92.5	0	(15,782)			3.0	0	0	0		0.00	3.6	0	0	0
97.5	0	(19,172)			2.8	0	0	0		0.00	3.3	0	0	0
102.5	0	(22,562)			2.5	0	0	0		0.00	3.1	0	0	0
107.5	0	(25,951)			2.5	0	0	0		0.00	3.1	0	0	0
				Presen	t Energy units:	751	1,468	983		Proposed E	inergy units:	6,636	0	842
					Energy types	Natural Gas	Electricity	Electricity		E	Energy types	Electricity	ambient air	Electricity
					Units	therm	kwh	kwh			Units			kwh
					BTU/unit	100.000	3,412	3,412			BTU/unit		0	3,412
					mmBtu	75	5,412	3,412			mmBtu	23	0	3,412
					mmBtu	/3		mmBtu	1		mmBtu			mmBtu
					Unit Cost	\$ 1.299	\$ 0.061	\$ 0.061	1		Unit Cost		\$ 0.000	\$ 0.061
													\$ 0.000 \$ 0	
					Annual Cost	\$ 976	\$ 90	\$ 60			Annual Cost	\$ 405		\$ 51
				F	oumps & Fans:		\$ 7 5			Pur	mps & Fans:		\$ O	
				Tota	Annual Costs	Present	\$ 1,200	ann. Cost		Total A	nnual Costs	Proposed	\$ 456	ann. Cost

HVAC system replacement - continued

Calculation of Loop Pumps & Heat Rejection Fan Loads

Calculatio	n or Loop Pu	imps & near r			0-:1				Deserved	Durations Use	t Duran			
			Present:	Non-Condensi Loop 1	Loop 2	Heat Rejection	00		Proposed:	Ductless Hea Loop 1	t Pump Loop 2	Heat Reject	tion	
			Туре	Heating	none	Fan	011		Type	none	none	Fan	tion	
		Assum	ed Delta T deg.	20	0	0	GPM/HP min	Assume	d Delta T deg.	0	0	0	GPM/HP min.	
			Estimated GPM	5	0	0			stimated GPM	0	0	0		
		Estima	ated Pump BHP	0.13	0.00	0.00	Fan BHP	Estimat	ted Pump BHP	0.00	0.00	0.00	Fan BHP	
		Estim	ated Motor Eff.	45%				Estima	ted Motor Eff.					
			Estimated kW	0.22	0.00	0.00			Estimated kW	0.00	0.00	0.00		
											10 0.0			
Bin Mid	Occupied	Occ Net Heat	Unsequeind	Uness Net		nt Pump & Far		Dregent MM	# months		d Pump & F		Drepered WW	Billed kW/yr.
DITIVITO	Occupied (Hrs/yr at	BLC x (Indoor	Unoccupied (Hrs/yr at	Unocc Net BLC x (Indoor ·	LOOP I KWN	Loop 2 kWh	Heat	Present kW	Bin is peak (# Months	Loop 1 kWh	Loop 2	Heat	Proposed kW	savings
(Outdoor	this outdoor	Outdoor	this outdoor	Outdoor	"Estimated			(Loop kWh +	the high	"Estimated			(Loop kWh +	
temp +/-	temp during	temp) -	temp during	temp) -	kW" x Occ +	(NA)	(NA)	Heat kWh +	temp falls	kW" x Occ +	(NA)	(NA)	Heat kWh +	Present kW -
2.5 °F)	occupied	Internal	unoccupied	Internal	Unocc Hours			Cool kWh) / Bin Hours	within this	Unocc			Cool kWh) /	Proposed kW
	times)	Gains	times)	Gains				bin hours	bin)	Hours			Bin Hours	
(7.5)	0	30,504	1	45,231	0			0.0	0	0	0			0.0
(2.5)	0	27,623	7	41,842	2	0		0.0	0	0	0			0.0
2.5	1	24,742	19	38,452	4	0		1.0	0	0	0			(2.1)
7.5	2	21,861 18,980	31 94	35,062 31,673	7	0		0.9	0	0	0			0.0
12.5	37	16,980	270	28,283	67	0	0	0.8	0	0	0			(2.7)
22.5	73	13,217	390	26,285	101	0		0.7	0	0	0			(1.0)
27.5	84	10,336	487	24,654	101	0		0.5	0	0	0			0.0
32.5	136	7,455	586	18,114	124	0		0.4	0	0	0			(0.5)
37.5	217	4,574	770	14,725	215	0	0	0.3	0	0	0			(0.1)
42.5	141	1,692	628	11,335	168	0		0.3	1	0	0		0.1	0.1
47.5	194	0	642	7,945	140	0	0	0.2	0	0	0	0	0.0	0.2
52.5	185	(1,765)	436	4,556	95	0	0	0.2	0	0	0			0.3
57.5	147	(4,646)	567	1,166	124	0		0.4	1	0	0			0.4
62.5	264	(7,527)	757	0	0	0	0	0.5	1	0	0			0.1
67.5	239	(10,409)	456	0	0	0	0	0.7	0	0	0			0.0
72.5 77.5	177	(13,290) (16,171)		(2,224) (5,613)	0	0	0	0.9	2	0	0			0.3
82.5	88	(10,171) (19,052)	71	(9,003)	0	0		1.2	1 4	0	0			0.2
87.5	2	(21,933)	9	(12,393)	0	0		1.0	2	0	0			0.5
92.5	0	(24,815)	0	(15,782)	0	0	0	0.0	0	0	0			0.0
97.5	0	(27,696)	0	(19,172)	0	0	0	0.0	0	0	0	0	0.0	0.0
102.5	0	(30,577)		(22,562)	0	0	0	0.0	0	0	0	0	0.0	0.0
107.5	0	(33,458)	0	(25,951)	0	0		0.0	0	0	0			0.0
					1,226	0		. 1.9		0	0		1.7	(4.1)
SUMMARY	OF CALCULAT	ED ENERGY USE	AND COSTS	Presen	t Pump & Fans				Proposed	Pump & Fans) kwh		
					Present:	Non-Conder		0.076		Proposed	Ductless H	-	0.405	
				_	Natural Gas Electricity	1,468	therm kwb	\$ 976 \$ 90		Electricity ambient air	6,636 C		\$ 405 \$ 0	
					Electricity		kwh	\$ 50 \$ 60		Electricity		, kwh	\$51	
		Loor	Pump & Heat			1,226		\$ 75		Electricity		kWh	\$0	
				,	Demand		billed kW/yr			Demand		billed kW/		
				Totals				\$ 1,391	-				\$ 686	\$ 705
					NY Upstate	1				Savings				
			Natural Gas Er				n				therm	\$ 976		
		N	atural Gas Emis		8,907					-3,801		(\$ 232)		
				nissions Rates		lb CO ₂ /MWh lb CO ₂ /yr	1			-4.1	kW	(\$ 39))	
			Electricity Emis	ssions Savings ssions Savings		Ib CO ₂ /yr Ib CO ₂ /yr								
			Total Lini:	ssions savings	58%									
	TATION COST	& PAYBACK PER			50%									
				Material	Labor									
Item				(\$ / unit)	(\$ / unit)	Quantity	Total							
Ductless H	eat Pump			\$ 10,260	\$ 6,840	2	\$ 34,200							
Boiler Depr				(\$ 7,656)			(\$ 12,760)							
Minisplit D	epreciation			(\$ 2,400)			(\$ 16,000)							
					Net Impleme	entation Cost:	\$ 5,440							
Inc. 1	tion Contra			00 500	40.000	6 9 4 9 6 7	- 49 5	and the state						
	ation Costs: rgy Savings:			20,520	13,680	\$ 34,200 \$ 705	= 48.5 years	раураск						
amudi Effe	- SA 20AUIS2					\$ 705								
Implement	ation Costs (ir	ncl. depreciatio	n):	3,264	2,176	\$ 5,440	= 7.7 years p	ayback						
	rgy Savings:		-	-,	_,_, .	\$ 705								
						÷.55								

ECM-6 Calculations

CALCULATIONS TO INSULATE ATTIC

ECM-6 Town of Newfield

INPUT DATA:

Surface to be insulated:	Roof	Walls			
Area:	7,474	3,346	sq ft		
Present R value:	25.2	5.3			
Revised R value	50.2	5.3			
Present U factor::	0.040	0.188	Btuh/sq ft-deg F		
Revised U factor:	0.020	0.188	Btuh/sq ft-deg F		
Present U x Area	296	629		925	UA Total present
Proposed U x Area	149	629		777	UA Total proposed

CALCULATIONS:	Occupied	Unoccupied	Fuel Data	Heating	Cooling
Heating Setpoint:	61	61	Type:	Natural Gas	Electricity
Cooling Setpoint:	75	75	Units:	therm	kwh
Q internal gains (Btuh):	8,418	1,204	Unit cost:	\$ 1.321	\$ 0.09
BLC (Btuh/degree F):	1,203	1,503	BTU/unit	100,000	3,412
T Balance (°F.):	54.0	60.2	Efficiency/ COP:	91.5%	3.22
T Balance = T Setpoint - (Q in	ternal gains / BLC)		EER:		11.0

Bin Mid-Pt.	Occupied	Unoccupied	Change in Occupied	Change in Unoccupied	Heating Savings	Cooling
DIN WIIG-PL	Hours	Hours	Heat Loss	Heat Loss	therm	Savings kwh
(7.5)	0	1	10,118	10,118	0	0
(2.5)	1	6	9,380	9,380	1	0
2.5	3	17	8,642	8,642	2	0
7.5	3	30	7,904	7,904	3	0
12.5	12	91	7,166	7,166	8	0
17.5	49	258	6,428	6,428	22	0
22.5	76	387	5,690	5,690	29	0
27.5	90	481	4,952	4,952	31	0
32.5	141	581	4,213	4,213	33	0
37.5	213	774	3,475	3,475	37	0
42.5	141	628	2,737	2,737	23	0
47.5	199	637	1,999	1,999	18	0
52.5	169	452	1,261	1,261	9	0
57.5	148	566	0	523	3	0
62.5	263	758	0	0	0	0
67.5	225	470	0	0	0	0
72.5	155	262	0	0	0	0
77.5	124	179	(369)	(369)	0	0
82.5	74	85	(1,107)	(1,107)	0	0
87.5	2	9	(1,845)	(1,845)	0	0
92.5	0	0	(2,583)	(2,583)	0	0
97.5	0	0	(3,321)	(3,321)	0	0
102.5	0	0	(4,059)	(4,059)	0	0
107.5	0	0	(4,797)	(4,797)	0	0
	8,760	hours		Energy Savings:	219	0
					\$ 289	\$ 0

	NY Upstate	
Natural Gas Emissions Rates	11.86	Ib CO ₂ /therm
Natural Gas Emissions Savings	2,593	lb CO₂/yr
Electricity Emissions Rates	235	lb CO₂/MWh
Electricity Emissions Savings	0	lb CO₂/yr
Total Emissions Savings	2,593	lb CO₂/yr
	8.8%	
ACNITATION COST & DAVBACK DEDIOD.		

IMPLEMENTATION COST & PAYBACK PERIOD:

Item	Material (\$ / sq ft)	Labor	Quantity	Total
Roof	\$ 0.82	\$ 0.89	7,474	\$ 12,781
Implementati	on Cost:		\$ 12,781	= 44.3 year paybac
Annual Energy	/ Savings:		\$ 289	

ECM-7 Calculations

CALCULATIONS TO INSULATE WALLS

ECM-7 Town of Newfield

INPUT DATA:

Surface to be insulated:	Roof	Walls			
Area:	7,474	3,346	sq ft		
Present R value:	25.2	5.3			
Revised R value	25.2	18.3			
Present U factor::	0.040	0.188	Btuh/sq ft-deg F		
Revised U factor:	0.040	0.055	Btuh/sq ft-deg F		
Present U x Area	296	629	925	UA Total present	
Proposed U x Area	296	183	479	UA Total propose	d
CALCULATIONS:	Occupied	Unoccupied	Fuel Data	Heating	Cooling
Heating Setpoint:	61	61	Type:	Natural Gas	Electricity
Cooling Setpoint:	75	75	Units:	therm	kwh
Q internal gains (Btuh):	8,418	1,204	Unit cost:	\$ 1.321	\$ 0.09
BLC (Btuh/degree F):	1,203	1,503	BTU/unit	100,000	3,412
T Balance (°F.):	54.0	60.2	Efficiency/ COP:	91.5%	3.22
T Balance = T Setpoint - (Q in	ternal gains / BLC)		EER:		11.0

Bin Mid-Pt.	Occupied	Unoccupied	Change in Occupied	Change in Unoccupied	Heating Savings	Cooling
biii wiid-ric	Hours	Hours	Heat Loss	Heat Loss	therm	Savings kwh
(7.5)	0	1	30,572	30,572	0	0
(2.5)	1	6	28,342	28,342	2	0
2.5	3	17	26,112	26,112	6	0
7.5	3	30	23,882	23,882	9	0
12.5	12.5 12 91		21,652	21,652 21,652		0
17.5	17.5 49 258		19,422	19,422	65	0
22.5	76	387	17,191	17,191	87	0
27.5	90	481	14,961	14,961	93	0
32.5	141	581	12,731	12,731	100	0
37.5	213	774	10,501	10,501	113	0
42.5	141	628	8,271	8,271	69	0
47.5	199	637	6,041	6,041	55	0
52.5	169	169 452 3,811 3,811		26	0	
57.5	148	566	0	1,581	10	0
62.5	263	758	0	0	0	0
67.5	225	470	0	0	0	0
72.5	155	262	0	0	0	0
77.5	124	179	(1,115)	(1,115)	0	0
82.5	74	85	(3,345)	(3,345)	0	0
87.5	2	9	(5,575)	(5,575)	0	0
92.5	0	0	(7,805)	(7,805)	0	0
97.5	0	0	(10,036)	(10,036)	0	0
102.5	0	0	(12,266)	(12,266)	0	0
107.5	0	0	(14,496)	(14,496)	0	0
	8,760	hours		Energy Savings:	660	0
					\$ 873	\$ O

	NY Upstate	
Natural Gas Emissions Rates	11.86	lb CO₂/therm
Natural Gas Emissions Savings	7,834	lb CO₂/yr
Electricity Emissions Rates	235	lb CO₂/MWh
Electricity Emissions Savings	0	lb CO₂/yr
Total Emissions Savings	7,834	lb CO₂/yr
	27%	-

IMPLEMENTATION COST & PAYBACK PERIOD:

Item	Material (\$ / sq ft)	Labor (\$ / sq ft)	Quantity	Total
Walls	\$ 2.82	\$ 1.79	3,346	\$ 15,406
Implementati	on Cost:		\$ 15,406	= 17.7 year payba
Annual Energ	y Savings:		\$ 873	

ECM-8 Calculations

CALCULATIONS FOR INSTALL AIR CURTAINS

ECM-8 **Town of Newfield**

NPUT DATA:			Peak A	verage			
	Outside Temperature	(°F)	-3	36			
	Inside Temperature	(°F)	61	61			
	Space		N Garage	E Garage	S Garage	Office	Total
	Door Width	(ft)	14	20	14	3	
	Door Height	(ft)	13	13	12	7	
	Qty	(#)	2	1	2	1	
	Period	(min/open)	2.0	2.0	2.0	0.5	
	Openings/Day	(#/day)	2	2	2	10	
	Volume	(ft³)	33,306	29,890	19,600	12,480	95,27
	Infiltration	(cfm)	33,486	23,919	29,698	1,418	88,52
	Velocity	(ft/s)	92.0	92.0	88.4	67.5	
	Time to Empty Space	(min)	1.0	1.2	0.7	8.8	
Peak	Total Infiltration	(ft³/open)	33,306	29,890	19,600	709	
FEAK	Heat Loss	(BTU/open)	61,043	54,782	35,923	1,299	153,04
	30 Min Heat Recovery	(BTU/hr)	122,085	109,564	71,845	2,598	306,09
	Heat Pump Surplus Capacity	(BTU/hr)	13,984	12,549	8,229	5,240	40,00
	Heat Pump Recovery Rate	(hr)	4.4	4.4	4.4	0.2	
	Infiltration	(cfm)	21,457	15,327	19,030	908	56,72
	Velocity	(ft/s)	58.9	58.9	56.6	43.3	
Average	Time to Empty Space	(min)	1.6	2.0	1.0	13.7	
	Total Infiltration	(ft³/open)	33,306	29,890	19,600	454	
	Average Infiltration Rate	(cfh)	7,837	7,033	4,612	534	20,01

CALCULATIONS:

Infiltration = 13.26 x Door Area x (1 - Outdoor Temp (absolute) / Indoor Temp (absolute)) ^ 1/2 x (Std Gravity x Door Height) ^ 1/2 x (2 / (1+(Indoor Temp (absolute) / Outdoor Temp (absolute)) ^ 1/3)) ^ 3/2

Heat Loss = 13.1 x Infiltration Volume / Outdoor Temp (absolute) * (Indoor Temp - Outdoor Temp)

Energy Savings = (Present Leakage - New Leakage) x Accum Hours x Temp Difference x CF2

Energy Cost Savings = (Energy Savings / CF1) x (Unit cost / Efficiency)

	Occupied	Unoccupied	_			
T Setpoint:	60	60	°F			
Q internal gains:	12,268	1,754	Btuh			
BLC:	1,203	1,503	Btuh/°F			
T Balance:	49.8	58.8	°F. T Balance = T S	etpoint - (Q	internal gains /	/ BLC)
Bin Data for Elmira, 43 h	rs./week					
Accumulated Ho	urs 928	4,909	below balance ter	np.		
Avg.	OAT 35.8	38.5	°F below balance	temp.		
(T Set- Avg C	DAT) 24.2	21.5	°F difference			
т	ype: Natural Gas	•				
	nits: therm					
Unit c		/therm				
	CF1 100,000	Btu/therm				
Efficier						
	CF2 0.018	Btu/hr-°F-cfh				
% Savi	ings 60%	,				
	En	ergy Savings - Bt	uluose	Total	Savings	1
	Occupied	Unoccupied	Total	therm / yr	Savings \$	
	4,851,939			53	\$ 70	1
	4,051,555		4,651,555	55	\$70	1
			NY Upstate			
	Natural Gas	Emissions Rates	11.86	Ib CO ₂ /therr	m	
	Natural Gas Er	missions Savings	629	lb CO₂/yr		
	Electricity	Emissions Rates	235	Ib CO ₂ /MW	h	
	Electricity Er	missions Savings	. 0	lb CO₂/yr		
	Total Er	missions Savings	629	lb CO₂/yr		
			2.1%			
IMPLEMENTATION COST & PAYBACK PER	RIOD:					
	Materials	Labor	Total	Savings		
Item	(\$)	(\$)	(\$)	(\$)		
N Garage Door Air Curtai	ins \$10,600.00	\$ 3,000.00	\$ 13,600	\$ 27	= 496 year p	aybac

\$ 25 = 386 year payback E Garage Door Air Curtains \$ 8,000.00 \$ 1,500.00 \$ 9,500 S Garage Door Air Curtains \$ 10,600.00 \$ 3,000.00 \$ 13,600 \$ 16 = 843 year payback
 \$ 2
 = 1016
 year payback

 \$ 70
 = 551
 year payback
 Office Door Air Curtain \$ 900.00 \$ 1,000.00 \$ 1,900 \$ 38,600 Totals: 30,100 8,500

ECM-9 Calculations

CALCULATIONS TO IMPLEMENT DEEPER SETBACK

EEM-9 Town of Newfield

INPUT DATA:		100%	of Building to be	Setback		
			Current	Proposed]	
Heating T Setpo	pint:	Occupied	60	60	deg. F.	
		Unoccupied	60	50	deg. F.	
Cooling T Setpo	pint:	Occupied	95	95	deg. F.	
		Unoccupied	95	95	deg. F.	
HVAC Schedule		Occupied	42.5	42.5	Hours per week	
		Unoccupied	125.5	125.5	Hours per week	
Q internal gair	is:	Occupied	8,418	8,418	Btuh	
		Unoccupied	1,204	1,204	Btuh	
Q internal gair	ns:	Schedule	43	43	Hours per week	
BLC:		Occupied	1,203	1,203	Btuh/deg. F.	
(excludes DOA	S)	Unoccupied	1,503	1,503	Btuh/deg. F.	
Heating T Actua		Occupied	60	60		
(w/ thermal ma			61	58		
(,		Fuel Data	Heating	Cooling	1	
		Type:	Natural Gas	Electricity	Economizer?	
		Units:	therm	kwh	0.0	
		Unit cost:	\$ 1.299	\$ 0.06		
		BTU/unit	100,000	3,412		
	Ef	ficiency/COP:	91.5%	4.17	Avg. COP. EER:	14.2
CALCULATION	S:			100.0%	of bldg. is cooled	t
Current		Elmira, 43 hrs	./week			
	Occupied	Unoccupied	Occ Net Heat	Unocc Net Heat	Heating Fuel	
Bin Mid Pt.	Hours	Hours	Loss BTUH	Loss BTUH	Use therm	Cooling Energy kwh
(7.5)	0	1	0	98,912	1	0
(2.5)	1	6	72,636	91,246	7	0
2.5	3	17	46,259	40,817	9	0
7.5	3	30	62,534	78,501	28	0
12.5	12	91	57,122	71,518	79	0
17.5	49	258	49,920	63,320	205	0
22.5	76	387	44,017	55,487	271	0
27.5	90	481	39,016	48,780	295	0
32.5	141	581	33,523	42,142	319	0
37.5	213	774	27,524	34,478	356	0
42.5	141	628	19,996	26,125	210	0
47.5	199	637	11,244	17,529	146	0
52.5	169	452	9,808	13,414	84	0
57.5	148	566	4,261	7,370	52	0
62.5	263	758	(570)	1,251	10	0
67.5	225	470	(1,978)	842	4	0
72.5	155	262	(2,170)	417	1	0
77.5	124	179	(1,805)	(68)	0	0
82.5	74	85	(1,313)	(754)	0	0
87.5	2	9	(3,247)	(842)	0	0
92.5	0	0	0	0	0	0
97.5	0	0	0	0	0	0
102.5 107.5	0	0	0	0	0	0
107.5	-	_	U	U		
	8,760	hours			2,078	0

EEM-9	Town of I					
roposed		Elmira, 43 hrs				
Bin Mid Pt.	Occupied	Unoccupied	Occ Net Heat	Unocc Net Heat		Cooling Energy kw
(7.5)	0	1	0	90,755	1	
(2.5)	1	6	64,966	83,945	6	
2.5	3	17	40,379	35,400	8	
7.5	3	30	55,620	70,529	25	
12.5	12	91	50,042	62,683	69	
17.5	49	258	46,188	55,344	181	
22.5	76	387	41,527	48,034	238	
27.5	90	481	36,973	42,296	259	
32.5	141	581	31,661	37,324	286	
37.5 42.5	213	774 628	26,402	31,280	326 193	
	141	637	19,159	23,841	195	
47.5 52.5	199	452	10,924 9,692	16,452	81	
57.5	109	452	4,088	12,841 7,108	51	
62.5	263	758	(591)	1,216	10	
67.5	205	470	(1.978)	842	4	
72.5	155	262	(2,170)	417	4	
72.5	133	179	(1,805)	(68)	0	
82.5	74	85	(1,803)	(754)	0	
87.5	2	9			0	
92.5	0	0	(3,247)	(842)		
			0	0	0	
97.5	0	0	0	0	0	
102.5	0	0	0	0	0	
107.5	0	0	0	0	0	
	8,760	hours			1,876	
			Descent	Deserved	C	
		llestine.	Present	Proposed	Savings	46
		Heating	2,078	1,876	202	therm
		Cooling	0	0	0	kwh
		Annual Energy	/Ş		\$ 262	
		ſ	NY Upstate			
		nissions Rates		lb CO2/therm		
Natu	ral Gas Emis	ssions Savings	-	lb CO₂/yr		
E	Electricity En	nissions Rates	235	lb CO₂/MWh		
Ele	ctricity Emis	ssions Savings	0	lb CO2/yr		
	Total Emis	ssions Savings	2,396	lb CO2/yr		
			8.1%			
	ION COST &	PAYBACK PERIC	DD:			
MPLEMENTAT		Material				
MPLEMENTAT				Quantity	Total	
MPLEMENTAT		\$/unit	Labor Ş/unit	Quantity	10001	
Item	tat	\$/unit \$ 150	Labor \$/unit \$ 50	Quantity 4	\$ 800	
	itat				\$ 800	
Item	tat				\$ 800 \$ 0	
Item	tat				\$ 800	
Item	itat Implementa	\$ 150		4	\$ 800 \$ 0	k

ECM-10 Calculations

CALCULATIONS TO INSTALL A TANKLESS WATER HEATER

ECM-10 Town of Newfield

	<u>-</u>	mplementation	COSL		Ş 1,600	- 1.2	year payoa
		male mentation .	Cast		¢ 1 900	- 72	year payba
Tankless Elect	ric Water Heater	1	\$ 600	\$ 1,200	\$ 1,800		
Item		Quantity	Material Costs	Labor Costs	Total	-	
INPLEINENTAT	ION COST & PAYBACK PERIO	<u>D:</u>					
		8.0%					
	Total Emissions Savings		lb CO₂/yr				
	ectricity Emissions Savings		lb CO ₂ /yr				
	Electricity Emissions Rates		lb CO₂/MWh				
	ral Gas Emissions Savings		lb CO ₂ /yr				
Na	tural Gas Emissions Rates		lb CO₂/therm				
		NY Upstate					
		0	billed kW /yr.				
		(217)					
	Annual Savings:		therm	\$ 248	per year		
	Annual Fuel Cost	\$ 266.8		\$ 18.5			
	Demand		billed kW /yr.	0	kW		
	Annual Fuel Consumption	202	therm	217	kwh		
	Output BTU/Year	19,186,490		741,129			
	Boiler Jacket Losses:	16,777,152			BTU/year BTU/year		
	Tank Energy Losses: Recirculation Losses:	1,668,210	BTU/year BTU/year		BTU/year BTU/year		
	Consumption Energy:		BTU output rqd/yr		BTU output rqd/yr		
		Present	DTU subscit and 6	Proposed	DTH subsub and (
CALCULATION	<u>S:</u>			Danasa			
		8,760	hours/year	8,700	hours/year =	100%	
	Jacket & Flue Losses: Boiler is Hot:		of boiler capacity		of boiler capacity	100%	
	Boiler Output Capacity		BTU output		BTU output		
	Efficiency:	95.0%		100.0%			
	Burner Input	40,000		44,360			
Boiler Jacket &	Flue Losses:						
		8,760	hours/year	8,760	hours/year =	100%	
Recirculation	Losses:		of boiler capacity =		BTUh		
	Ambient Temperature:		Deg. F.	65			
	Hours Tank is Hot: Water Temperature:		Hours Deg. F.	8,760 125			
	# of Tanks		Qty.		Qty.		
	-		gallons/tank		gallons/tank		
	Diameter of Tank:		inches		inches		
	Height of Tank:		inches		inches		
storage rank L	Tank U factor:		Btu/SF/Hour		Btu/SF/Hour		
Storage Tank L	05585	Present Tank		Proposed Tank			
	Average hot water temp:		degrees F		degrees F		
	Average inlet water Temp:		degrees F		degrees F		
	Days of Usage: Hours of Usage per Day:		per year hours		per year hours		
	Number of persons:		(estimate)		(estimate)		
	Hot Water Usage:		Gallons/person/day	0.5	Gallons/person/d	ау	
Annual DHW C	Consumption:	Present		Proposed			
	Months of demand:	12	per year	0	per year		
	Net kW Demand Savings:	-	kW per month		kW per month		
	Demand Diversity:	33%		33%			
	Average kW demand:	0.0	· · · · · · · · · · · · · · · · · · ·	0.1	·		
	kW Demand cost:		per kW		per kW		
	Fuel Cost: BTU / unit:		per therm Btu per therm		per kwh Btu per kwh		
	Units:	therm		kwh			
	Fuel:	Natural Gas		Electricity			
	Fuel:				-		

ECM-11 Calculations

CALCULATIONS TO REPLACE HVAC SYSTEM with DUCTLESS HEAT PUMP EEM-11 Town of Newfield

INPLIT DATA

INFOLDATA								
Present HVAC system:	Present Fuels	Type:	Units:	Unit cost:	BTU/unit	COP	Rated at	EER
Forced Air	Heating 1	Natural Gas	therm	\$ 1.321	100,000	0.915	Et	
non-heat pump	Heating 2			\$ 0.000	0			
100% of the building	Cooling	Electricity	kwh	\$ 0.085	3,412	3.224	95° OAT	11.0
Proposed HVAC system:	Proposed Fue	Type:	Units:	Unit cost:	BTU/unit	COP	Rated at	EER
Ductless Heat Pump	Heating 1	Electricity	kwh	\$ 0.085	3,412	4.000	47° OAT	
heat pump	Heating 2	ambient air		\$ 0.000	0			
Below (8) °F. OA Temp	Cooling	Electricity	kwh	\$ 0.085	3,412	3.810	95° OAT	13.0
All heat is provided by	Heating 2 Low			\$ 0.000	0			

HVAC Loa system)	ıds (excludin	g any DOAS		Present HVAC system: Forced Air					Proposed HVAC system: Ductless Heat Pump					
Bin Mid Pt.	Occupied Hours	Occ Net Heat Loss BTUH	Heating 1 Et or COP Natural Gas	Heating 2 Et or COP	Cooling COP Electricity	Heating 1 Natural Gas therm	Heating 2	Cooling Electricity kwh	Heating 1 Et or COP Electricity	Heating 2 Et or COP ambient air	Cooling Et or COP Electricity	Heating 1 Electricity kwh	Heating 2 ambient air	Cooling Electricity kwh
(Outdoor temp +/- 2.5 °F)	(Hrs/yr at this outdoor temp during occupied times)	BLC x (Indoor - Outdoor temp) - Internal Gains	(Present heating system efficiency)	(NA)	(Present cooling system efficiency)	Heat Loss / Efficiency x Hrs/yr (in therms)	(NA)	Heat Gain / Efficiency x Hrs/yr (in kWh)	(Proposed heating system efficiency)	(NA)	(Proposed cooling system efficiency)	Heat Loss / Efficiency x Hrs/yr (in kWh)	(NA)	Heat Gain / Efficiency x Hrs/yr (in kWh)
(7.5)	0	74,011	0.92			0	0	0	2.10	0.00		0	0	0
(2.5)	1	67,998	0.92			1	0	0	2.21	0.00		9	0	0
2.5	3	61,985	0.92			2	0	0	2.34	0.00		23	0	0
7.5	3	55,972	0.92			2	0	0	2.48	0.00		20	0	0
12.5	12	49,959	0.92			7	0	0	2.64	0.00		67	0	0
17.5	49	43,947	0.92			24	0	0	2.81	0.00		225	0	0
22.5 27.5	76	37,934	0.92			31	0	0	3.00 3.20	0.00		282 263	0	0
32.5	90 141	31,921 25.908	0.92			31 40	0	0	3.20	0.00		263	0	0
32.5	213	25,908	0.92			40	0	0	3.65	0.00		313	0	0
42.5	141	19,895	0.92			21	0	0	3.90	0.00		147	0	0
42.5	141	7.869	0.92			17	0	0	4.16	0.00		147	0	0
52.5	169	1.856	0.92			3	0	0	4.10	0.00		21	0	0
57.5	105	1,050	0.52			0	0	0		0.00		0	ő	0
62.5	263	0				0	0	0		0.00		0	0	0
67.5	225	0				0	0	0		0.00		0	0	0
72.5	155	(5,412)			4.6	0	0	0		0.00	4.9	0	0	0
77.5	124	(11,424)			4.3	0	0	0		0.00	4.5	0	0	0
82.5	74	(17,437)			3.9	0	0	0		0.00	4.2	0	0	0
87.5	2	(23,450)			3.6	0	0	0		0.00	3.8	0	0	0
92.5	0	(29,463)			3.3	0	0	0		0.00	3.6	0	0	0
97.5	0	(35,476)			3.0	0	0	0		0.00	3.3	0	0	0
102.5	0	(41,489)			2.8	0	0	0		0.00	3.1	0	0	0
107.5	0	(47,502)			2.8	0	0	0		0.00	3.1	0	0	0

Bin Mid Pt.	Unoccupied Hours	Unocc Net Heat Loss BTUH	Heating Eff./COP Electricity	Heating Eff./COP	Cooling Eff. EER	Heating 1 Natural Gas therm	Heating 2	Cooling Electricity kwh	Heating 1 Et or COP Electricity	Heating 2 Et or COP ambient air	Cooling Et or COP Electricity	Heating 1 Electricity kwh	Heating 2 ambient air	Cooling Electricity kwh
(Outdoor temp +/- 2.5 °F)	(Hrs/yr at this outdoor temp during unoccupied times)	BLC x (Indoor - Outdoor temp) - Internal Gains	(Present heating system efficiency)	(NA)	(Present cooling system efficiency)	Heat Loss / Efficiency x Hrs/yr (in therms)	(NA)	Heat Gain / Efficiency x Hrs/yr (in kWh)	(Proposed heating system efficiency)	(NA)	(Proposed cooling system efficiency)	Efficiency x Hrs/yr (in kWh)	(NA)	Heat Gain / Efficiency x Hrs/yr (in kWh)
(7.5)	1	101,833	0.92			1	0	0		0.00		14	0	
(2.5)	6	94,317	0.92			6	0	0		0.00		75	0	
2.5	17	86,800	0.92			16	0	0		0.00		185	0	
7.5	30	79,284	0.92			26	0	0		0.00		281	0	
12.5	91	71,768	0.92			71	0	0		0.00		726	0	
17.5	258	64,252	0.92			181	0	0		0.00		1,729	0	
22.5	387	56,736	0.92			240	0	0		0.00		2,147	0	
27.5	481	49,220	0.92			259	0	0		0.00		2,168	0	
32.5	581	41,704	0.92			265	0	0		0.00		2,078	0	
37.5	774	34,188	0.92			289	0	0		0.00		2,125	0	
42.5	628	26,672	0.92			183	0	0		0.00		1,260	0	
47.5	637	19,155	0.92			133	0	0		0.00		860	0	
52.5	452	11,639	0.92			57	0	0		0.00		347	0	
57.5	566	4,123	0.92			25	0	0		0.00		145	0	
62.5	758	0				0	0	0		0.00		0	0	
67.5	470	0				0	0	0		0.00		0	0	
72.5	262	0				0	0	0		0.00		0	0	
77.5	179	(4,962)			4.3	0	0	0		0.00	4.5	0	0	
82.5	85	(12,478)			3.9	0	0	0		0.00	4.2	0	0	
87.5	9	(19,994)			3.6	0	0	0		0.00	3.8	0	0	
92.5	0	(27,510)			3.3	0	0	0		0.00	3.6	0	0	
97.5	0	(35,026)			3.0	0	0	0		0.00	3.3	0	0	
102.5	0	(42,542)			2.8	0	0	0		0.00	3.1	0	0	
107.5	0	(50,058)			2.8	0	0	0		0.00	3.1	0	0	
				Presen	t Energy units:	1,979	0	0		Proposed E	nergy units:	15,959	0	0
					Energy types	Natural Gas	0	Electricity		E	inergy types	Electricity	ambient air	Electricity
					Units	therm		kwh			Units	kwh		kwh
					BTU/unit	100,000	0	3,412			BTU/unit	3,412	0	3,412
					mmBtu	198	0	0			mmBtu	54	0	
					mmBtu			mmBtu	1		mmBtu			mmBtu
					Unit Cost	\$ 1.321	\$ 0.000	\$ 0.085	1		Unit Cost	\$ 0.085	\$ 0.000	\$ 0.085
					Annual Cost	\$ 2,614	\$ 0.000	\$ 0.005 \$ 0			Annual Cost	\$ 1,357	\$ 0.000	
						\$ 2,014		30				\$ 1,557		
					Pumps & Fans:		\$ 60		4		mps & Fans:		\$ O	
				Tota	l Annual Costs	Present	\$ 2,674	ann. Cost]	Total A	nnual Costs	Proposed	\$ 1,357	ann. Cost

HVAC system replacement - continued

Calculation of Loop Pumps & Heat Rejection Fan Loads

Calculatio	on of Loop Pu	mps & Heat R	lejection Fan	Loads										
			Present:	Forced Air					Proposed:	Ductless Heat	Pump			
				Loop 1	Loop 2	Heat Rejection	on			Loop 1	Loop 2	Heat Rejection		
			Type		none	Fan			Type		none	Fan		
			ed Delta T deg.	20	0	0	GPM/HP min.		ed Delta T deg.	0	0	0	GPM/HP min.	
			Estimated GPM ated Pump BHP		0 0.00	0.00	Fan BHP		stimated GPM ted Pump BHP	0.00	0 0.00	0	Fan BHP	
			ated Pump BHP ated Motor Eff.		0.00	0.00	ran brie		ited Pump BHP ited Motor Eff.	0.00	0.00	0.00	ran brir	
		Estim	Estimated kW		0.00	0.00			Estimated kW	0.00	0.00	0.00		
					Preser	nt Pump & Far	1 Loads		# months	Propose	d Pump & F	an Loads		Billed kW/yr.
Bin Mid	Occupied	Occ Net Heat	Unoccupied	Unocc Net	Loop 1 kWh	Loop 2 kWh	Heat	Present kW	Bin is peak	Loop 1 kWh	Loop 2	Heat Rejection	Proposed kW	savings
	(Hrs/yr at	BLC x (Indoor -	(Hrs/yr at	BLC x (Indoor				(Loop kWh +	(# Months				(Loop kWh +	
(Outdoor	this outdoor	Outdoor	this outdoor	Outdoor	"Estimated			Heat kWh +	the high	"Estimated	((1)	Heat kWh +	Present kW -
temp +/- 2.5 °F)	temp during	temp) - Internal	temp during	temp) - Internal	kW" x Occ + Unocc Hours	(NA)	(NA)	Cool kWh) /	temp falls within this	kW" x Occ + Unocc Hours	(NA)	(NA)	Cool kWh) /	Proposed kW
2.5 F)	occupied times)	Gains	unoccupied times)	Gains	onocc nours			Bin Hours	bin)	UNDEC HOURS			Bin Hours	
(7.5)	0	74,011	1	101,833	0	0	0	0.0	0	0	0	0	0.0	0.0
(2.5)	1	67,998	6	94,317	1	0	0	0.1	0	0	0	0		(8.9)
2.5	3	61,985	17	86,800	2	0	0	0.1	0	0	0	0	7.8	0.0
7.5	3	55,972	30	79,284	3	0	0	0.1	0	0	0	0		(6.5)
12.5	12	49,959	91	71,768	8	0	0	0.1	0	0	0	0	5.6	(5.5)
17.5	49	43,947	258	64,252	25	0	0	0.1	0	0	0	0		(9.0)
22.5 27.5	76 90	37,934 31,921	387 481	56,736 49,220	37	0	0	0.1	0	0	0	0		0.0
32.5	90	25,908	481	49,220	46	0	0	0.1	0	0	0	0		0.0 (6.4)
37.5	213	19,895	774	34,188	79	0	0	0.1	0	0	0	0		0.0
42.5	141	13,882	628	26,672	62	0	0	0.1	1	0	0	0	1.0	(1.0)
47.5	199	7,869	637	19,155	67	0	0	0.1	0	0	0	0		(1.4)
52.5	169	1,856	452	11,639	50	0	0	0.1	0	0	0	0	0.1	0.0
57.5	148	0	566	4,123	57	0	0	0.1	1	0	0	0	0.0	0.2
62.5	263	0	758	0	82	0	0	0.1	1	0	0	0		0.1
67.5	225	0	470	0	56	0	0	0.1	0	0	0	0		0.0
72.5	155	(5,412) (11,424)	262	0 (4,962)	34	0	0	0.1	2	0	0	0	0.0	0.2
82.5	74	(11,424) (17,437)	85	(12,478)	24	0	0	0.1	1 4	0	0	0	0.0	0.1
87.5	2	(23,450)	9	(19,994)	15	0	0	0.1	2	0	0	0	0.0	0.3
92.5	0	(29,463)	0	(27,510)	0	0	0	0.0	0	0	0	0		0.0
97.5	0	(35,476)	0	(35,026)	0	0	0	0.0	0	0	0	0		0.0
102.5	0	(41,489)	0	(42,542)	0	0	0	0.0	0	0	0	0	0.0	0.0
107.5	0	(47,502)	0	(50,058)	0	0	0	0.0	0	0	0			0.0
					704	0	0	0.1		0	0	0	0.0	(37.8)
				Presen	t Pump & Fans	704	kwh		Propose	d Pump & Fans	0	kwh		
CUMANAADY														
SUMMARY	OF CALCULAT	ED ENERGY USE	AND COSTS		Present:	Forced Air				Proposed	Ductless He	ant Dump		
				Heating 1	Natural Gas		therm	\$ 2,614		Electricity	15,959		\$ 1,357	
				Heating 2	0			\$0		ambient air	0		\$ 0	
					Electricity		kwh	\$ 0		Electricity		kwh	\$ 0	
		Loop	Pump & Heat	Rejection Fans		704	kwh	\$ 60		Electricity	0	kWh	\$ 0	
					Demand	1.9	billed kW/yr.	\$ 18	_	Demand	39.7	billed kW/yr.	\$ 375	_
				Totals				\$ 2,692					\$ 1,731	\$ 961
			Natural Car F	nissions Rates	NY Upstate 11.86	Ib CO ₂ /therm				Savings 1,979	4 h a a a a	\$ 2,614		
			atural Gas Emi			Ib CO ₂ /vr				-15,255		(\$ 1,297)		
				nissions Rates		Ib CO ₂ /MWh				-37.8		(\$ 356)		
			Electricity Emi			Ib CO ₂ /yr								
				ssions Savings	19,893	lb CO ₂ /yr								
					67%									
IMPLEMEN	TATION COST	& PAYBACK PER	LIOD:											
Item				Material (\$ / unit)	Labor (\$ / unit)	Quantity	Total							
Ductless H	est Pump			\$ 15,120	\$ 10,080	2	\$ 50,400							
Boiler Dep				(\$ 3,864)			(\$ 6,440)							
	r Depreciation			(\$ 3,036)			(\$ 10,120)							
						ntation Cost:								
	ation Costs:			30,240	20,160		= 52.4 years	payback						
Annual Ene	ergy Savings:					\$ 961								
Implement	ation Costs ()-	cl. depreciatio	n):	20,304	13,536	6 22 040	= 35.2 years	navback						
	ation Costs (ir ergy Savings:	ci. ueprecia(lo	99-	20,504	10,000	\$ 33,840 \$ 961	- 55.2 years	μαγματκ						

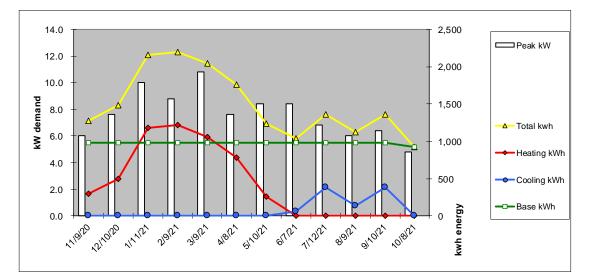
Town Hall Utility Analysis Calculations

Analysis of Energy Usage

Town of Newfield 166 Main St Newfield, NY 14867

Fuel Data											
		Total Energ	gy Use and Cos	t		Describe the Energy Used for Heating					
Energy	Energy Energy Type Data			Total Annual		% used for	Default	Total	Units by	Units by	mmBtu
Туре	Units	btu/unit	\$/unit	Cost	Use	Heating:	Eff.	units	by DOAS	non-HP	to Space
Natural Gas	therm	100,000	\$ 1.30	\$ 1,271	751	100%	80.0%	751	0	751	60
Oil - No. 2	gal.	138,000	\$ 0.00	\$ 0	0	100%	83.0%	0	0	0	0
LPG	gal.	92,000	\$ 0.00	\$0	0	100%	92.0%	0	0	0	0
Electricity	kwh	3,412	\$ 0.06	\$ 2,210	17,960	30%	100.0%	5,300	0	5,300	18
Multiple	mmBtu	1,000,000	\$ 13.94				83.9%	93			78
Water	kGal.	0	\$ 0.98	\$ 6,040	5,045						

^{52%}


For ground or air source HP systems

based on equipment defined on the Equipment tab

30%

of annual electricity use used by the HPs in heating mode.

Extraction of	Electric He	ating/Cooling		Estimate Elec	tric Heating?	Yes	Estimate Elect	ric Cooling?	Yes
				First month o	f heating fall	10	First month of	5	
Mete	ered Electric	ity Use & Dem	and	Last month of	heating spring	4	Last month of	cooling	9
Month		Energy	Demand		Enter "X" for	Heating	Enter "X" for	Cooling	Base
Ending	Days	kWh	kW	Month	base months	kwh	base months	kwh	kwh
11/9/20	30	1,280	6.0	10		300		0	980
12/10/20	31	1,480	7.6	11		500		0	980
1/11/21	32	2,160	10.0	12		1,180		0	980
2/9/21	29	2,200	8.8	1		1,220		0	980
3/9/21	28	2,040	10.8	2		1,060		0	980
4/8/21	30	1,760	7.6	3		780		0	980
5/10/21	32	1,240	8.4	4		260		0	980
6/7/21	28	1,040	8.4	5	Х	0	х	60	980
7/12/21	35	1,360	6.8	6		0		380	980
8/9/21	28	1,120	6.0	7		0		140	980
9/10/21	32	1,360	6.4	8		0		380	980
10/8/21	28	920	4.8	9	Х	0	Х	0	920
363 17,960				Annual Heati	ng kwh:	5,300	Annual AC:	960	kwh/year
			Ν	Ion-heat Base	980	kwh/month	Base Usage:	980	kwh / month

Town Barn Utility Analysis Calculations

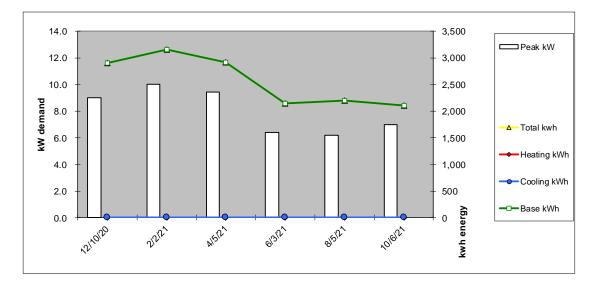
Analysis of Energy Usage

Town of Newfield 166 Main St Newfield, NY 14867

Fuel Data											
		Total Energ	y Use and Cos	t		Describe the Energy Used for Heating					
Energy	Energy Energy Type Data				Total Annual		Default	Total	Units by	Units by	mmBtu
Туре	Units	btu/unit	\$/unit	Cost	Use	Heating:	Eff.	units	by DOAS	non-HP	to Space
Natural Gas	therm	100,000	\$ 1.32	\$ 3,177	2,181	91%	91.5%	1,979	0	1,979	181
Oil - No. 2	gal.	138,000	\$ 0.00	\$0	0	100%	83.0%	0	0	0	0
LPG	gal.	92,000	\$ 0.00	\$0	0	100%	92.0%	0	0	0	0
Electricity	kwh	3,412	\$ 0.09	\$ 2,005	15,420	0%	100.0%	0	0	0	0
Multiple	mmBtu	1,000,000	\$ 13.21				91.5%	198			181
Water	kGal.	0	\$ 0.98	\$ 6,040	5,045						

0%

based on equipment defined on the Equipment tab


For ground or air source HP systems 0%

of annual electricity use used by the HPs in heating mode.

Disaggregation of Monthly Metered Energy: Natural Gas

				Base Usage =	17	therm / mon	th
Month			Usage	Enter "X" for	Htg. Use	Base	other
Ending	# Days	therm	Month	base months	therm	therm	therm
11/4/20	30	177	10		160	17	0
12/8/20	34	82	11		65	17	0
1/7/21	30	430	12		413	17	0
2/2/21	26	504	1		487	17	0
3/5/21	31	390	2		373	17	0
4/5/21	31	395	3		378	17	0
5/6/21	31	96	4		79	17	0
6/3/21	28	34	5		17	17	0
7/7/21	34	18	6	х	1	17	0
8/5/21	29	18	7	х	1	17	0
9/7/21	33	15	8	Х	0	15	0
10/6/21	29	22	9		5	17	0
	366	2,181	For N	lonths Shown:	1,979	202	0

Breakdown	of Heating E	nergy Use						
DOAS/MUA	FA	Non-FA						
therm	therm	therm						
0	0	160						
0	0	65						
0	0	413						
0	0	487						
0	0	373						
0	0	378						
0	0	79						
0	0	17						
0	0	1						
0	0	1						
0	0	0						
0	0	5						
0	0	1,979						

Town Hall Building Load Coefficient Calculations

ESTIMATE OF BUILDING LOAD COEFFICIENT & TRUE-UP TO BILLED ENERGY USE

	Town of Newfield 166 Main St Newfield, NY 14867		
Building Information Width (typical)	30 feet	Building Floor Area	3,480 sq. ft.
Equivalent Length	58 feet	Roof Area	1,740 sq. ft.
Number of Floors Avg. Floor to Floor Height Roof or Ceiling rise is	1.5 floors 9 feet per floor 0 feet in 12' run	Gross Wall Area Building Volume	2,376 sq. ft. 31,320 cubic feet

Estimate of Conductive Heat Loss

					U x A	% of BLC
<u>Surface</u>		Area	<u>R-value</u>	<u>U Factor</u>	<u>Btuh/deg. F.</u> w	/o ventilation
Roof	n/a	1,740	20.3	0.049	86	15%
Walls	86.6% of GWA	2,058	10.6	0.095	195	34%
Glazing 1	6.3% of GWA	150	1.7	0.588	88	15%
Glazing 2	0.0% of GWA	0	0.9	1.111	0	0%
Doors 1	8 3x7 doors	168	2.0	0.500	84	15%
Doors 2	0 3x7 doors	0	1.7	0.588	0	0%
	Total Exterior Surface Area	4,116 sq.ft			452	79%

		ACH	equiv. cfm	Btuh/deg. F.	BLC (without ventilation)
Est. Infiltration Rate	Occupied	0.40	209	226	576 Btuh/deg. F. Occupied
Est. Infiltration Rate	Unoccupied	0.40	209	226	678 Btuh/deg. F. Unoccupied
		cfm	Fraction	Btuh/deg. F.	Total BLC with Ventilation
Est. Ventilation Rate	Occupied		100%	0	576 Btuh/deg. F. Occupied
Est. Ventilation Rate	Unoccupied		100%	0	678 Btuh/deg. F. Unoccupied

Heat Gain Estimation

Estimated Solar Gain	15% of building heat loss during occupied periods will be met by solar gair								
		kW	# People	Total BTUH	Hours/wk.				
Loads & People	Occupied	3.1	10	13,002	41.0				
	Unoccupied	0.6	0	1,885	127.0				

Town of Newfi	eld				Fuel Data	Ŭ,	Cooling	_
166 Main St					Type:	-	Electricity	Economizer?
Newfield, NY 1	4867			1	Units:		kwh	No
			Current		Unit cost:		\$ 0.06	
Heating T Setp	oint:	Occupied	68	deg. F.	BTU/unit		3,412	
		Unoccupied	62	deg. F.	Nom. Eff, COP	0.816	2.93	
Cooling T Setp	oint:	Occupied	72	deg. F.	Avg. Eff, COP	0.798		Avg. COP
		Unoccupied	72	deg. F.			10.0	EER
HVAC Schedul	е	Occupied	41	Hrs. per week		r	100%	of bldg. coole
		Unoccupied	127	Hrs. per week			DOAS En	ergy Use
Q internal gai	ns:	Occupied	13,002	Btuh			0	cfm
		Unoccupied	1,885	Btuh			0%	heat recov. Ef
Q internal gai	ns:	Schedule	41	Hrs. per week			Heating	0
BLC:		Occupied	576	Btuh/deg. F.			0	
		Unoccupied	678	Btuh/deg. F.			0%	eff.
							0.00	COP cool
Current			hundle					
current		Elmira, 41 hrs	./ week				0	hrs/week
Bin Mid Pt.	Occupied Hours	Unoccupied Hours	Occ Net Heat Loss BTUH	Unocc Net Heat Loss BTUH	Heating Fuel Use mmBtu	Cooling Energy kwh	DOAS Hours	DOAS Heatin kBtu/yr.
(7.5)	0	1	30,504	45,231	0	0	0	
(7.5)	0	7	27,623	43,231	0	0	0	
2.5	1	19	27,023	38,452	1	0	0	
7.5	2	31	24,742	35,062	1	0	0	
12.5	9	94	18,980	31,673	4	0	0	
17.5	37	270	16,098	28,283	10	0	0	
22.5	73	390	13,217	24,894	13	0	0	
27.5	84	487	10,336	21,504	13	0	0	
32.5	136	586	7,455	18,114	15	0	0	
37.5	217	770	4,574	14,725	15	0	0	
42.5	141	628	1,692	11,335	9	0	0	
47.5	194	642	0	7,945	6	0	0	
52.5	185	436	(1,765)	4,556	2	23	0	
57.5	147	567	(4,646)		1	47	0	
62.5	264	757	(7,527)	0	0	137	0	
67.5	239	456	(10,409)	0	0	172	0	
72.5	177	240	(13,290)	(2,224)	0	199	0	
77.5	144	159	(16,171)	(5,613)	0	222	0	
82.5	88	71	(19,052)	(9,003)	0	160	0	
87.5	2	9	(21,933)	(12,393)	0	11	0	
92.5	0	0	(24,815)		0	0	0	
97.5	0	0	(27,696)		0	0	0	
102.5	0	0	(30,577)		0	0	0	
107.5	0	0	(33,458)		0	0	0	
	8,760	hours			94	970	DOAS fuel use	
							DOAS cool use	

	Historic	Calculated	Difference
Present Annual Heating Fuel Use is	93 mmBTU	94	100% of present fuel use
AC energy use from Utility Analysis tab:	960 kwh/year	970	101% of present fuel use

Town Barn Building Load Coefficient Calculations

ESTIMATE OF BUILDING LOAD COEFFICIENT & TRUE-UP TO BILLED ENERGY USE

	Town of Newfield					
	166 Main St					
	Newfield, NY 1	4867				
Building Information						
Width (typical)	74	feet	Building Floor Area	7,474	sq. ft.	
Equivalent Length	101	feet	Roof Area	7,474	sq. ft.	
Number of Floors	1.0	floors	Gross Wall Area	4,426	sq. ft.	
Avg. Floor to Floor Height	12.6	feet per floor	Building Volume	94,514	cubic feet	
Roof or Ceiling rise is	0	feet in 12' run				

Estimate of Conductive Heat Loss

					UxA	% of BLC
<u>Surface</u>		Area	<u>R-value</u>	<u>U Factor</u>	<u>Btuh/deg.F.</u> v	v/o ventilation
Roof	n/a	7,474	25.2	0.040	296	25%
Walls	75.6% of GWA	3,346	5.3	0.188	629	52%
Glazing 1	1.3% of GWA	57	1.7	0.588	34	3%
Glazing 2	0.0% of GWA	0	0.9	1.111	0	0%
Doors 1	3 3x7 doors	63	5.0	0.200	13	1%
Doors 2	5.7 14x12 rollup	960	9.0	0.111	107	9%
	Total Exterior Surface Area	11,900 sq.ft	t.	_	1,078	90%
	29%	1.59				

		ACH	equiv.cfm Btuh/deg.F.		BLC (without ventilation)
Est. Infiltration Rate	Occupied	0.25	394	425	1,203 Btuh/deg. F. Occupied
Est. Infiltration Rate	Unoccupied	0.25	394	425	1,503 Btuh/deg. F. Unoccupied
		cfm	Fraction Bt	uh/deg. F.	Total BLC with Ventilation
Est. Ventilation Rate	Occupied		100%	0	1,203 Btuh/deg. F. Occupied
Est. Ventilation Rate	Unoccupied		100%	0	1,503 Btuh/deg. F. Unoccupied

Heat Gain Estimation

Estimated Solar Gain	20% of building heat loss during occupied periods will be met by solar gains					
		kW	# People	Total BTUH	Hours/wk.	
Loads & People	Occupied	1.8	10	8,418	42.5	
	Unoccupied	0.4	0	1,204	125.5	

Town of Newfi	eld				Fuel Data		Cooling	
166 Main St	4067					Natural Gas	Electricity	Economizer?
Newfield, NY 1	4867		Const	1	Units:		kwh	0.0
	• .		Current		Unit cost:	\$ 1.321	\$ 0.09	
Heating T Setp	oint:	Occupied	61	deg. F.	BTU/unit	-	3,412	
	• •	Unoccupied	61	deg. F.	Nom. Eff, COP	0.915	3.22	
Cooling T Setp	oint:	Occupied	75	deg. F.	Avg. Eff, COP	0.915		Avg. COP
		Unoccupied	75	deg. F.			11.0	
HVAC Schedul	е	Occupied	43	Hrs. per week		F		of bldg. cooled
		Unoccupied	126	Hrs. per week			DOAS En	ergy Use
Q internal gai	ns:	Occupied	8,418	Btuh			0	cfm
		Unoccupied	1,204	Btuh			0%	heat recov. Eff
Q internal gai	ns:	Schedule	43	Hrs. per week			Heating	0
BLC:		Occupied	1,203	Btuh/deg. F.			0	
		Unoccupied	1,503	Btuh/deg. F.			0%	eff.
		•	•	_			0.00	COP cool
Current		Elmira, 43 hrs	huook				0	hrs/week
current			./ WEEK	1			0	III S/ WEEK
	Occupied	Unoccupied	Occ Net Heat	Unocc Net	Heating Fuel	Cooling Energy		DOAS Heatin
Bin Mid Pt.	Hours	Hours	Loss BTUH	Heat Loss	Use therm	kwh	DOAS Hours	kBtu/yr.
	nours	Tiours	2033 01011	BTUH	03e therm	KWII		KDtu/ yr.
(7.5)	0	1	74,011	101,833	1	0	0	
(2.5)	1	6	67,998	94,317	7	0	0	
2.5	3	17	61,985	86,800	18	0	0	
7.5	3	30	55,972	79,284	28	0	0	
12.5	12	91	49,959	71,768	78	0	0	
17.5	49	258	43,947	64,252	205	0	0	
22.5	76	387	37,934	56,736	271	0	0	
27.5	90	481	31,921	49,220	290	0	0	
32.5	141	581	25,908	41,704	305	0	0	
37.5	213	774	19,895	34,188	335	0	0	
42.5	141	628	13,882	26,672	204	0	0	
47.5	199	637	7,869	19,155	150	0	0	
52.5	169	452	1,856	11,639	61	0	0	
57.5	148	566	0	4,123	25	0	0	
62.5	263	758	0	0	0	0	0	
67.5	225	470	0	0	0	0	0	
72.5	155	262	(5,412)		0	0	0	
77.5	124	179	(11,424)		0	0	0	
82.5	74	85	(17,437)		0	0	0	
87.5	2	9	(23,450)		0	0	0	
92.5	0	0	(29,463)		0	0	0	
97.5	0	0	(35,476)		0	0	0	ļ
102.5	0	0	(41,489)		0	0	0	
	0	0	(47,502)	(50,058)	0	0	0	
107.5	8,760				1,979	0	DOAS fuel use	

	Historic	Calculated	Difference	
Present Annual Heating Fuel Use is	198 mmBTU	198	100%	of present fuel use
AC energy use from Utility Analysis tab:	0 kwh/year	0	#DIV/0!	of present fuel use