Map of Otsego County Parks, Forests, and Recreation Areas

Town of New Lisbon Comprehensive Plan Recommendations Relating to Natural Resources and Cultural, Historic and Recreational Resources

Natu	ral Resource Protection			
1	Direct development away from areas where slopes are greater than 15%	Policy	Immediate	Planning Board
	(steep slopes) [Sections 5.2 & 5.10.1]			Town Board
2	Limit the maximum grade of new driveways to 15% and the maximum	Policy	Immediate	Planning Board
-	grade of new roads to 12% [Section 5.2 & 5.10.1].			Town Board
3	Educate the public about the importance of maintaining wellhead protection	Policy	Immediate	Planning Board
J	zones around their wells. [Sections 5.3 & 5.10.2].	·		Town Board
4	Enforce NYSDEC requirements to maintain a 100-foot setback between	Policy	Immediate	Planning Board
•	development and adjacent wetlands for watercourses [Section 5.3.2 & 10.2].	·		Town Board
5	Limit the development of buildings within the 100-year floodplain [Section]	Policy	Immediate	Planning Board
J	5.3.3 & 5.10.2].	•		Town Board
6	Encourage landowners to retain and restore riparian zones along the	Policy	Immediate	Planning Board
v	Butternut Creek or West Branch of the Otego Creek and to participate in the	-		Town Board
	CREP grant program [Section 5.3.4 & 5.10.2].			
7	Require SWPPP in accordance with the NYSDEC State Pollution Discharge	Policy	Immediate	Planning Board
,	Elimination System (SPDES) general permit for commercial developments	-		Town Board
	or major subdivision applications [Section 5.3.5 & 5.10.2].			
8	Require developers to design a reserve field into their septic system designs	Policy	Immediate	Planning Board
U	[Section 5.4].	•		Town Board
9	Situate homes in the vicinity of ridgelines back from the edge of the ridge	Policy	Immediate	Planning Board
,	on slopes of 15% or less and encourage retention of trees [Section 5.5].	-		Town Board
10	Protect night sky and limit light pollution through the use of down-lit	Policy	Immediate	Planning Board
10	lighting with horizontal cut-off lens [Section 5.6].	-		Town Board
11	Support invasive plant eradication efforts and aquatic invasive species	Policy	Immediate	Town Board
— —	eradication efforts [Section 5.7].	-		OCCA
12	Encourage landowner participation in the NYSDEC Forestry Management	Program	Short-term	Town Board
	Program and work with State to create a program for Sugar Bush [5.8].	-		AAC
13	Seek EPA Targeted Watershed Grant funds to conduct stream restoration	Grant	Short-term	Town Board
10	projects and to develop Unpaved Road and Road Ditch Plan [Section 5.10].	Application		County Planning
Imme	ediate = 1 Year Short-Term = 1-2 Years	Long-Ter	m = 2-5 yea	rs

Cultu	ıral, Historic & Recreational Resources			
29	Use the Archeological Sensitivity Map as a guide in determining when	Policy	Immediate	Planning Board
	an archeological survey should be required [Section 7.1].			
30	Support efforts by local landowners to preserve their historic buildings	Policy	Immediate	Town Board
	and the preservation of historic resources [Section 7.3].			Town Historian
31	Support efforts to list eligible properties on the State and National	Policy	Immediate	Town Board
	Register of Historic Places [7.3].			Town Historian
32	Support efforts by local landowners to preserve historic schoolhouses,	Policy	Immediate	Town Board
	barns and historic cemeteries by providing letters of support for grant			Town Historian
	applications to the State Office of PRHP [Section 7.3.1, 3.2, 3.3].			
33	Support efforts by property owners to participate in the Conservation	Policy	Immediate	Town Board
	Tax Credit (CTC) Program [Section 7.4].			
34	Ensure that payment-in-lieu of parkland fees are collected to offset	Policy	Immediate	Planning Board
	expenditures associated with new development [Section 11.2].			Town Board
35	Coordinate with the New York State DEC to seek their assistance in	Intermunicipal	Short-term	Town Board
ot	developing more trails for public use within the Texas Schoolhouse	Coordination		NYSDEC
	State Forest and Gilbert Lake State Park [Section 7.2].			OCCA
36	Designate seasonal roads for cross-country ski trails during winter	Policy	Short-term	Town Board
	months and plow off-street parking areas [Section 7.2].			Highway Department
37	Create a Town of New Lisbon Recognition of Historic Resources	Program	Long-term	Town Board
	Program [Section 7.4].			Town Historian

Base Map

Created by Trevor Fuller (09-27-21) Data Sources: NYS GIS Clearinghouse USGS NYS DEC Projection: NAD_1983_UTM_Zone_18N Transverse_Mercator

Slopes Map

Soils Map

Soil Association	Slope Range	Drainage Class	Typical Location in Town	Limitations to Agriculture
LORDSTOWN-MARDIN-BATH:				
Dominantly nearly level to very steep, moderately deep and very deep, well-drained and moderately well-drained; in glaciated uplands which are often bedrock controlled.	>15%	Well-Drained and Moderately Well-Drained	Upland hillsides, hilltops, valley sides	Depth to bedrock, or fragipan, slopes greater than 15%, wetness, slow permeability and low ph.
MOUNGAUP-WILLDIN-LEWBATH				
Dominantly nearly level to very steep, moderately deep to very deep, medium textured soils; in glaciated uplands which are often bedrock controlled in elevations over 1,750 feet.	>15%	Well-Drained and Moderately Well-Drained	Upland hillsides, hilltops, valley sides at elevations > 1,750 feet (e.g. Texas Schoolhouse State Forest & vicinity)	Depth to bedrock, slopes greater than 15%, wetness, slow permeability, cooler soil temperatures, low ph.
CHENANGO-VALOIS-HOWARD				
Dominantly nearly level to very steep, very deep, well-drained, moderately coarse textured and medium textured soils that formed in glacial outwash, inwash deposits, alluvial fans, and ablation till; in outwash plains and along valley walls.	0-15%	Well-Drained to Somewhat Excessively Drained	Found within Butternut Valley beyond the floodplain.	Well-suited to agriculture, but droughtiness, slopes and very rapid permeability may pose some limitations.
SCIO-CHENANGO-OTEGO				
Dominantly nearly level and gently sloping, very deep, moderately coarse textured and medium textured soils that formed in alluvium, glacial outwash and water-deposited silts.	0-15%	Somewhat Excessively Drained	Lands abutting Butternut Creek and lying within the floodplain.	Well-suited to agriculture. Wetness and droughtiness and very rapid permeability are limitations.

Detailed Soils Map

Created by Trevor Fuller (09-27-21) Data Sources: NYS GIS Clearinghouse USGS NYS DEC Projection: NAD_1983_UTM_Zone_18N Transverse_Mercator

Water Resources Map

////

- Town, County & State Highways

Hamlet of Garrattsville

Lakes, Wetlands

Data Sources: NYS GIS Clearinghouse USGS NYS DEC Projection: NAD_1983_UTM_Zone_18N Transverse_Mercator

Butternut Creek - Map and Basin Characteristics Report

Butternut Creek at Unadilla River StreamStats Report

Region ID:	NY
Workspace ID:	NY20161029121256146000
Clicked Point (Latit	42.41547,-75.37394
Time:	2016-10-29 14:16:42 -0400

Basin Characteristics						
Parameter Code	Parameter Description	Value	Unit			
DRNAREA	Area that drains to a point on a stream	130	square miles			

Bankfull Statistics Parameters [100.00 Percent Bankfull Region 5 SIR2009 5144]

Parameter	Value	Min Limit	Max Limit
Drainage Area	130	0.7	332

Bankfull Statistics Flow Report [100.00 Percent Bankfull Region 5 SIR2009 5144]

Statistic	Value	Unit	Prediction Error
Bankfull Area	593	ft^2	24
Bankfull Depth	5.039	ft	20
Bankfull Streamflow	2920	ft^3/s	36
Bankfull Width	120	ft	27

Bankfull Statistics Citations

Mulvihill, C.I., Baldigo, B.P., Miller, S.J. and DeKoskie Douglas,, 2009, Bankfull Discharge and Channel Characteristics of Streams in New York State: U.S. Geological Survey Scientific Investigations Report 2009-5144, 51 p. (http://pubs.usgs.gov/sir/2009/5144/)

Butternut Valley Alliance Library Catalog

BVA Butternut Creek Watershed Library of Environmental Reports and Publications

Title	Authors	Date	Description
Citizen Science Water Quality Monitoring Data	Hasbargen, L. and Lentz, E.	2022	Raw data from the ongoing WQM of the Butternut Creek at County Highway 12.
Butternut Creek Assessment	Capuana, E., Otsego County SWCD	2021	The purpose of this report is to summarize the Watershed Assessment of Butternut Creek as part of a project developed by the Upper Susquehanna Coalition (USC) and funded by the National Fish and Wildlife Foundation referred to as the I-4 project. The project was facilitated by the Otsego County Soil and Water Conservation District in collaboration with Otsego County Conservation Association (OCCA), Butternut Valley Alliance, SUNY Oneonta, USC, and numerous volunteers. The I-4 project represents an approach to watershed conservation and management that builds on four principal components: Information, Investigation, Implementation, and Integration. The Watershed Assessment combined with the <i>Butternut Creek Watershed Background Report</i> provide a valuable tool to evaluate and prioritize future restoration in the watershed and will supply essential information to support the Implementation and Integration components of the I-4 project.
Butternut Creek Watershed Background Report	Capuana, E., Otsego County SWCD	2021	The purpose of this report is to compile all relevant background information about the Butternut Creek Watershed as part of a project developed by the Upper Susquehanna Coalition (USC) and funded by the National Fish and Wildlife Foundation (NFWF) referred to as the I-4 project. The project was facilitated by the Otsego County Soil and Water Conservation District in collaboration with Otsego County Conservation Association, Butternut Valley Alliance, SUNY Oneonta, USC, and numerous volunteers. The I-4 project represents an approach to watershed conservation and management that builds on four principal components: Information, Investigation, Implementation, and Integration. This background summary combined with the Butternut Creek Assessment provide a valuable tool to evaluate and prioritize future restoration in the watershed and will supply essential information to support the Implementation and Integration components of the I-4 project.
Public Fishing Rights Map - Butternut Creek	NYSDEC	2021	These generalized location maps are intended to aid anglers in finding PFR segments.
Region 4 Fisheries notes	Pokorny, T.	2021	Notes re: aquatic resources, fisheries management and public fishing/boating access in DEC Region 4.
Re-introduction of the American Eel to the NY Portion of the Susquehanna River Activities and Results	Coney, S. and Lord, P.	2020	This report describes surveys that were performed in the year of the first authorized reintroduction of the American eel (<i>Anguilla rostrata</i>) to the NY portion of the Upper Susquehanna Watershed.
Butternut Creek Fish Survey Data	Stitch, D., Coney, S. and Albright, M.	2020	Fish species counts from a survey near Bailey Road.
Water Quality Monitoring Data Analysis & Interpretation (Butternut Creek Packet)	Alliance for Aquatic Resource Monitoring	2020	Report on citizen science water quality monitoring in Otsego County between October 2017 and January 2020, as part of Alliance for Aquatic Resource Monitoring's Water Quality Monitoring Program. Butternut Creek monitoring was carried out by Dr. Les Hasbargen and Ed Lentz.
Macroinvertebrate Monitoring Field Data Sheet	Hasbargen, L., Lentz, E.T., and Lentz, V.	2019	Report on citizen science macroinvertebrate survey in the Butternut Creek on July 27, 2019.
Habitat Enhancement and Population Augmentation at a Historic Eastern Hellbender (Cryptobranchus alleganiensis alleganiensis) Site	Herman, M.	2018	This internship report describes a pilot project spearheaded by James Curatolo and The Wetland Trust (TWT) that would first enhance habitat at the last known hellbender site in the Upper Susquehanna River watershed and then release and monitor head-started juveniles at this location to augment the declining adult population.
Basswood Pond Salmonid Netting Survey	Pokorny, T.	2018	Report of Survey #417041 to assess the status of the cold water fishery and warm water fishery.
Re-introduction of the American Eel to the NY Portion of the Susquehanna River Activities and Results	Coney, S. and Lord P.	2018	This report details baseline surveys that have been carried out prior to the reintroduction of the American eel to the NY portion of the Upper Susquehanna Watershed.
The Reintroduction of the American Eel to the Upper Susquehanna Watershed	Coney, S.	2018	This slide presentation was presented at BVA program. In addition to the eel reintroduction project, the presentation covered eel parasites, invasive crayfish, Eastern Hellbenders, mussels and fish species diversity.
Baseline fish survey of Butternut Creek. SUNY Oneonta Biological Field Station, Cooperstown	Angell, N.	2017	This paper focuses on the fish species living in the Butternut Creek and the creation of a fish population survey.
Butternut Creek Biomonitoring	Peterson, J.	2017	Benthic macroinvertebrates are studied to assess water quality over time. A comparison was made to a survey conducted 15 years prior in order to assess temporal trends in water quality.
Water quality assessment of Butternut Creek	Sleeper, S.,	2017	The purpose of this study was to monitor the Upper Susquehanna watershed and its main tributaries with a specific focus on sediment movement in Butternut Creek. pH, electrical conductivity, and turbidity were also measured.
Historic Survey Data 1935-2004	NYSDEC, Region 4 Stamford, Bureau of Fisheries	2016	Species counts in surveys conducted from 1935 to 2004.
Butternut Creek Stocking Data 1925-2011	NYSDEC, Region 4 Stamford, Bureau of Fisheries	2016	Stocking data from 1925 to 2011.
Butternut Creek Biological Survey	Pokorny, T.	2016	Report of survey of Butternut Creek to monitor the Brook Trout population.

Title	Authors	Date	Description
Butternut Creek, Burlington to Morris (CROTS Survey)	Wells, S.	2016	The purpose of this survey was to assess the trout fishery in the Butternut Creek.
Report on Migration of Butternut Creek in Wheeler's field	Hasbargen, L., Booth, P., and Busby, D.	2015	This report summarizes the activity of a meander loop of Butternut Creek. The report gathers information about channel location over time using aerial imagery and elevation data sets from government agencies, and provides a new highly detailed image and elevation survey.
Aquatic invasive species present in Otsego County, NY water bodies	Yoo, A., Herzog, K., and Waterfield, H.	2013	13 Sites in the Butternut were surveyed for aquatic invasive species.
2011 Pearly Mussel Surveys of Portions of the Catatonk Creek, Butternut Creek and Unadilla River	Lord, P.H., and Pokornoy, T.N.	2012	Report of surveys conducted for pearly mussels species of greatest conservation need in Catalonk Creek, Butternut creek, and Unadilla River.
Butternut Creek Biological Assessment (2004):	Bode, R.W., Novak, N.A., Abele, L.E., Heitzman, D.L., and Smith, A.J.	2004	Report of biological sampling by NYSDEC Stream Biomonitoring Unit in July 2003 to assess general water quality and to determine spatial or chronological water quality trends. The survey employed eight stations from Garrattsville to Mt. Upton and was conducted in part to help understand the apparent decline in the hellbender population in Mt. Upton.
Benthic Macroinvertebrate Survey of Butternut Creek	Stensland, M.	2002	Master's thesis describing a benthic macroinvertebrate survey of the Butternut Creek.
Last updated: March 24, 2022			

West Branch Otsego Creek - Map and Basin Characteristics Report

StreamStats Report

Region ID: Workspace ID: Clicked Point (Latitude, Longitude): Time: NY NY20211107135647416000 42.58919, -75.05844 2021-11-07 08:57:07 -0500

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	19.7	square miles

Bankfull Statistics Parameters [Bankfull Region 5 SIR2009 5144]								
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit			
DRNAREA	Drainage Area	19.7	square miles	0.7	332			

Bankfull Statistics Parameters [Appalachian Highlands D Bieger 2015]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	19.7	square miles	0.07722	940.1535

Bankfull Statistics Parameters [Appalacian Plateaus P Bieger 2015]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	19.7	square miles	0.081081	536.995602

Bankfull Statistics Parameters [USA Bieger 2015]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	19.7	square miles	0.07722	59927.7393

Bankfull Statistics Flow Report [Bankfull Region 5 SIR2009 5144]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu
Bankfull Area	126	ft^2	68.5	232
Bankfull Depth	2.49	ft	1.4	4.42
Bankfull Streamflow	581	ft^3/s	178	1900
Bankfull Width	51.5	ft	27.1	97.8

Bankfull Statistics Flow Report [Appalachian Highlands D Bieger 2015]

Statistic	Value	Unit
Bieger_D_channel_width	52.3	ft
Bieger_D_channel_depth	2.64	ft
Bieger_D_channel_cross_sectional_area	141	ft^2

Bankfull Statistics Flow Report [Appalacian Plateaus P Bieger 2015]

Statistic	Value	Unit
Bieger_P_channel_width	56.6	ft
Rieger P channel denth	267	ft

Dieger_i _onannoi_acptii		2.07	,	
Bieger_P_channel_cross_sectional_area		150		ft^2
Bankfull Statistics Flow Report [USA Bieger 2015]				
Statistic		Va	lue	Unit
Bieger_USA_channel_width		35	.4	ft
Bieger_USA_channel_depth		2.2	27	ft
Bieger_USA_channel_cross_sectional_area		85	.5	ft^2
Depletul Ctatiatica Flow Depart [Area Averaged]				
Bankruli Statistics Flow Report [Area-Averaged]				
PII: Prediction Interval-Lower, Plu: Prediction Interv of Prediction, SE: Standard Error (other see repor	ral-Upper, ASE t)	p: Averag	e Stand	ard Error
PII: Prediction Interval-Lower, Plu: Prediction Interv of Prediction, SE: Standard Error (other see repor Statistic	al-Upper, ASE t) Value	p: Averag Unit	e Stand PII	ard Error Plu
PII: Prediction Interval-Lower, PIu: Prediction Interv of Prediction, SE: Standard Error (other see repor Statistic Bankfull Area	ral-Upper, ASE t) Value 126	p: Averag Unit ft^2	e Stand PII 68.5	ard Error Plu 232
PII: Prediction Interval-Lower, PIu: Prediction Interv of Prediction, SE: Standard Error (other see repor Statistic Bankfull Area Bankfull Depth	ral-Upper, ASE t) Value 126 2.49	p: Averag Unit ft^2 ft	e Stand PII 68.5 1.4	ard Error Plu 232 4.42
PII: Prediction Interval-Lower, PIu: Prediction Interv of Prediction, SE: Standard Error (other see repor Statistic Bankfull Area Bankfull Depth Bankfull Streamflow	ral-Upper, ASE t) Value 126 2.49 581	p: Averag Unit ft^2 ft ft^3/s	e Stand PII 68.5 1.4 178	ard Error Plu 232 4.42 1900
PII: Prediction Interval-Lower, Plu: Prediction Interv of Prediction, SE: Standard Error (other see repor Statistic Bankfull Area Bankfull Depth Bankfull Streamflow Bankfull Width	ral-Upper, ASE t) Value 126 2.49 581 51.5	p: Averag Unit ft^2 ft ft^3/s ft	e Stand PII 68.5 1.4 178 27.1	ard Error Plu 232 4.42 1900 97.8
PII: Prediction Interval-Lower, Plu: Prediction Interv of Prediction, SE: Standard Error (other see repor Statistic Bankfull Area Bankfull Depth Bankfull Streamflow Bankfull Width Bieger_D_channel_width	ral-Upper, ASE t) Value 126 2.49 581 51.5 52.3	p: Averag Unit ft^2 ft ft^3/s ft ft	e Stand PII 68.5 1.4 178 27.1	ard Error Plu 232 4.42 1900 97.8
PII: Prediction Interval-Lower, Plu: Prediction Interv of Prediction, SE: Standard Error (other see repor Statistic Bankfull Area Bankfull Depth Bankfull Streamflow Bankfull Width Bieger_D_channel_width Bieger_D_channel_depth	ral-Upper, ASE t) Value 126 2.49 581 51.5 52.3 2.64	p: Averag Unit ft^2 ft ft^3/s ft ft ft	e Stand PII 68.5 1.4 178 27.1	ard Error Plu 232 4.42 1900 97.8
Pil: Prediction Interval-Lower, Plu: Prediction Interv of Prediction, SE: Standard Error (other see repor Statistic Bankfull Area Bankfull Depth Bankfull Streamflow Bankfull Width Bieger_D_channel_width Bieger_D_channel_depth Bieger_D_channel_cross_sectional_area	ral-Upper, ASE t) Value 126 2.49 581 51.5 52.3 2.64 141	p: Averag Unit ft^2 ft ft^3/s ft ft ft ft ft	e Stand PII 68.5 1.4 178 27.1	ard Error Plu 232 4.42 1900 97.8

2.67

150

35.4

2.27

85.5

ft

ft

ft

ft^2

ft^2

Bankfull Statistics Citations

Bieger_P_channel_depth

Bieger_USA_channel_width

Bieger_USA_channel_depth

Bieger_P_channel_cross_sectional_area

Bieger_USA_channel_cross_sectional_area

Mulvihill, C.I., Baldigo, B.P., Miller, S.J., and DeKoskie, Douglas,2009, Bankfull Discharge and Channel Characteristics of Streams in New York State: U.S. Geological Survey Scientific Investigations Report 2009-5144, 51 p. (http://pubs.usgs.gov/sir/2009/5144/) Bieger, Katrin; Rathjens, Hendrik; Allen, Peter M.; and Arnold, Jeffrey G.,2015, Development and Evaluation of Bankfull Hydraulic Geometry Relationships for the Physiographic Regions of the United States, Publications from USDA-ARS / UNL Faculty, 17p. (https://digitalcommons.unl.edu/usdaarsfacpub/1515? utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F1515&utm_medium=PDF&utm_c

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.6.2 StreamStats Services Version: 1.2.22 NSS Services Version: 2.1.2 Appendix 3-5 (N,S)

State-protected Wetlands Maps

NRI Flood Zones Map

Data Sources: NYS GIS Clearinghouse USGS NYS DEC Projection: NAD_1983_UTM_Zone_18N Transverse_Mercator

Erosion Sites Data

GIS ID	DECFIN	Watershed	NHDRC	Other ID	Date	LAT	LONG	Deposition	Deposition Featur	Debris	Dep_BankSide	Land Us	s Erosion
207	SR-146-9	Middle Butternut	2050101000412	Butternut Creek	5/26/17	42.5841700	-75.1922200	Yes	Gravel bar/LWD	Yes	Right		Yes
204	SR-146-9	Middle Butternut	2050101000412	Butternut Creek	5/26/17	42.5883300	-75.1930600	Yes	Gravel bar	No	Left		Yes
201	SR-146-9	Middle Butternut	2050101000412	Butternut Creek	5/26/17	42.5885000	-75.1932500	Yes	Gravel bar	No	N/A		Yes
1350	SR-146-9-29	Middle Butternut	2050101000658	Stony Creek - MB_001	9/27/17	42.5913900	-75.1911100	No	No	No	N/A		Yes
1351	SR-146-9-29	Middle Butternut	2050101000658	Stony Creek - MB_001	9/27/17	42.5919400	-75.1905600	Yes	Gravel bar	No	Mid-channel		Yes
1252	SR-146-0-20	Middle Butterput	2050101000658	Stopy Creek - MB 001	۵/27/17	12 5922200	-75 1877800	Voc	Gravel bar	No	Right		Voc
1333	511-140-9-29		2050101000058		5/2//1/	42.3922200	-75.1877800	163	Graver bar		Ngh		103
1362	SR-146-9-29	Middle Butternut	2050101000658	Stony Creek - MB 001	9/27/17	42 5936100	-75 1822200	Vec	Gravel bar	No	Right		Vec
1502	51(140 5 25		2050101000058		5/2//1/	42.3330100	75.1022200	103	Graver bar		MgHt		
71	SR-146-9	Upper Butternut	2050101000413	Butternut Creek	11/4/16	42.5947200	-75.1931200						Yes
1364	SR-146-9-29	Middle Butternut	2050101000658	Stony Creek - MB_001	9/27/17	42.5947600	-75.1809100	Yes	Gravel bar	No	Right		Yes
1366	SR-146-9-29	Middle Butternut	2050101000658	Stopy Creek - MB 001	9/27/17	42 5958900	-75 1783000	Yes	Gravel bar/IWD	Yes	left		Yes
			2000101000000		3727727	12.0000000	/ 511/ 00000						
1683	SR-146-9-29	Middle Butternut	2050101000659	Stony Creek - MB_001	10/19/17	42.5973700	-75.1710500	Yes	Gravel bar	No	Right		Yes
97	SR-146-9	Upper Butternut	2050101000413	Butternut Creek	11/4/16	42.6141400	-75.1890700						Yes
90	SR-146-9	Upper Butternut	2050101000414	Butternut Creek	11/4/16	42.6216400	-75.1859700						Yes
56	SR-146-9	Upper Butternut	2050101000415	Butternut Creek	10/30/16	42,6293800	-75,1801200						Yes
					-0,00,-0								
55	SR-146-9	Upper Butternut	2050101000415	Butternut Creek	10/30/16	42.6308700	-75.1803000						Yes
54	SR-146-9	Upper Butternut	2050101000415	Butternut Creek	10/30/16	42.6320500	-75.1795800						Yes
1617	SR-146-9-36	Upper Butternut	2050101000951	Unnamed tributary - UB 024	10/13/17	42.6396000	-75.1832000	Yes	Gravel bar/LWD	Yes	N/A		Yes
				, _					,		,		
47	SR-146-9	Upper Butternut	2050101000416	Butternut Creek	10/30/16	42.6455700	-75.1739600	Yes	LWD	Yes	Left		Yes
		••											
46	SR-146-9	Upper Butternut	2050101000416	Butternut Creek	10/30/16	42.6459300	-75.1734700						Yes
22	SR-146-9-37	Upper Butternut	2050101000950	Unnamed tributary - UB_022	10/23/16	42.6475000	-75.1727778						Yes
16	SR-146-9	Upper Butternut	2050101000417	Butternut Creek	10/21/16	42.6480560	-75.1650000						Yes
146	SR-146-9	Upper Butternut	2050101000417	Butternut Creek	11/18/16	42.6522667	-75.1539833						Yes
1202		Line on Dudthamant	2050404000050		0/20/47	42 (502222	75 4775000	No. a	Crevelher	NIa	Disht		
1383	SR-146-9-37	Opper Butternut	2050101000950	Unnamed tributary - UB_022	9/29/17	42.6583333	-75.1775000	Yes	Gravel bar	NO	Right		Yes
1382	SR-146-9-37	Opper Butternut	2050101000950	Unnamed tributary - UB_022	9/29/17	42.6588889	-/5.1////8	N/A	NO	NO	N/A		Yes
1379	SR-146-9-37	Opper Butternut	2050101000950	Unnamed tributary - UB_022	9/29/17	42.6594444	-/5.1////8	N/A	NO	NO	N/A		Yes
13//	SR-146-9-37	Opper Butternut	2050101000950	Dutterput Creek	9/29/17	42.6605556	-/5.1//2222	N/A	NO	NO	IN/A		Yes
119	SP-140-9	Upper Butternut	2050101000418	Butterput Crock	11/11/10	42.0009000	-75.14/4/00						Voc
60	31-140-9	opper Butternut	2050101000413		11/4/10	42.5995200	-12.1311500						162
3068	SR-146-9-29-1	Middle Butternut	2050101000942	Mill Creek/Stony Creek - MB_001B	9/12/18	42.6046000	-75.1783900	No	No	No	N/A		Yes
1870	SR-146-9-29	Middle Butternut	2050101000660	Stony Creek - MB_001	11/9/17	42.6079900	-75.1562000	Yes	Gravel bar/LWD	No	Left		Yes
678	SR-146-9	Linner Butternut	2050101000413	Butternut Creek	8/2/17	42 6099200	-75 1931800	Vec	Gravel bar/Beaver	Voc	Channel snanning		Vec
0/0	51(140.5		2050101000415	Butternut creek	0/2/1/	42.0055200	75.1551000				channel spanning		
3096	SR-146-9-29-1	Middle Butternut	2050101000942	Mill Creek/Stony Creek - MB_001B	9/14/18	42.6180300	-75.1705300	No	No	No	N/A		Yes
3094	SR-146-9-29-1	Middle Butternut	2050101000942	Mill Creek/Stony Creek - MB_001B	9/14/18	42.6204000	-75.1688300	Yes	LWD	Yes	Channel spanning		Yes
1582	SR-146-9-34	Upper Butternut	2050101000953	Unnamed tributary - UB 025	10/12/17	42.6316700	-75,1980000	Yes	LWD	Yes	N/A		Yes
2002	SR-146-9-37	Upper Butternut	2050101000950	Unnamed tributary - UB 022	10/23/16	42.6483333	-75.1744450						Yes
		- pper batternat			_0, _0, _0								
111	SR-146-9	Upper Butternut	2050101000418	Butternut Creek	11/11/16	42.6654000	-75.1450100						Yes
	1	1	1						1		1		

	75	SR-146-9	Upper Butternut	2050101000413	Butternut Creek	11/4/16	42.5916600	-75.1939200					Yes
	3065	SR-146-9-29-1	Middle Butternut	2050101000942	Mill Creek/Stony Creek - MB_001B	9/12/18	42.6070700	-75.1780200	Yes	Gravel bar/LWD	No	Both	Yes
	137	SR-146-9	Upper Butternut	2050101000418	Butternut Creek	11/18/16	42.6560400	-75.1497800					Yes
	52	SR-146-9	Upper Butternut	2050101000415	Butternut Creek	10/30/16	42.6332200	-75.1798200	Yes	Beaver Dam	Yes	Channel spanning	Yes
	51	SR-146-9	Upper Butternut	2050101000416	Butternut Creek	10/30/16	42.6361700	-75.1788800	Yes	Beaver Dam	Yes	Channel spanning	Yes
	49	SR-146-9	Upper Butternut	2050101000416	Butternut Creek	10/30/16	42.6387800	-75.1776400	Yes	Beaver Dam	Yes	Channel spanning	Yes
	77	SR-146-9	Upper Butternut	2050101000412	Butternut Creek	11/4/16	42.5906700	-75.1934000					Yes
Ì	1361	SR-146-9-29	Middle Butternut	2050101000658	Stony Creek - MB_001	9/27/17	42.5936100	-75.1836100	Yes	Gravel bar	No	Left	Yes
	1365	SR-146-9-29	Middle Butternut	2050101000658	Stony Creek - MB_001	9/27/17	42.5957790	-75.1795530	Yes	Gravel bar/LWD	Yes	Left	Yes
	1668	SR-146-9-29	Middle Butternut	2050101000660	Stony Creek - MB_001	10/19/17	42.5978000	-75.1688000	Yes	Gravel bar	No	Right	Yes
	671	SR-146-9	Upper Butternut	2050101000413	Butternut Creek	8/2/17	42.6105500	-75.1930600	Yes	Gravel bar/LWD	No	Left	Yes
ľ	1834	SR-146-9-29	Middle Butternut	2050101000660	Stony Creek - MB_001	11/9/17	42.6119100	-75.1480800	Yes	Gravel bar	Yes	Mid-channel	Yes
Ì	1704	SR-146-9-32	Upper Butternut	2050101004097	Unnamed tributary - UB_027	11/1/17	42.6130000	-75.2012700	Yes	Gravel bar	No	N/A	Yes
	98	SR-146-9	Upper Butternut	2050101000413	Butternut Creek	11/4/16	42.6132300	-75.1896400					Yes
	1636	SR-146-9-32	Upper Butternut	2050101004097	Unnamed tributary - UB_027	10/17/17	42.6147500	-75.1917000	Yes	Gravel bar	No	Left	 Yes
	95	SR-146-9	Upper Butternut	2050101000413	Butternut Creek	11/4/16	42.6168100	-75.1886400					Yes
	1604	SR-146-9-34	Upper Butternut	2050101000953	Unnamed tributary - UB_025	10/12/17	42.6222220	-75.1858330	Yes	Gravel bar	No	Left	 Yes
	1593	SR-146-9-34	Upper Butternut	2050101000953	Unnamed tributary - UB_025	10/12/17	42.6257000	-75.1924400	No	No	No	N/A	 Yes
	1592	SR-146-9-34	Upper Butternut	2050101000953	Unnamed tributary - UB_025	10/12/17	42.6258700	-75.1930700	Yes	LWD	Yes	N/A	 Yes
	82	SR-146-9	Upper Butternut	2050101000415	Butternut Creek	11/4/16	42.6267900	-75.1819600					Yes
	81	SR-146-9	Upper Butternut	2050101000415	Butternut Creek	11/4/16	42.6275800	-75.1821000					Yes
	1538	SR-146-9-34	Upper Butternut	2050101000953	Unnamed tributary - UB_025	10/5/17	42.6316500	-75.1977100	Yes	LWD	Yes	Left	Yes
	1536	SR-146-9-34	Upper Butternut	2050101000953	Unnamed tributary - UB_025	10/5/17	42.6319444	-75.1988889	Yes	LWD	Yes	Mid-channel	Yes
	1616	SR-146-9-36	Upper Butternut	2050101000951	Unnamed tributary - UB_024	10/13/17	42.6392000	-75.1820000	N/A	N/A	N/A	N/A	Yes
	48	SR-146-9	Upper Butternut	2050101000416	Butternut Creek	10/30/16	42.6418900	-75.1763300					Yes
	21	SR-146-9-37	Upper Butternut	2050101000950	Unnamed tributary - UB_022	10/23/16	42.6472069	-75.1725778					Yes
	11	SR-146-9	Upper Butternut	2050101000417	Butternut Creek	10/21/16	42.6502780	-75.1594440					Yes
	7	SR-146-9	Upper Butternut	2050101000417	Butternut Creek	10/21/16	42.6505560	-75.1577780					Yes
ľ	148	SR-146-9	Upper Butternut	2050101000417	Butternut Creek	11/18/16	42.6522100	-75.1543300					Yes
ĺ	130	SR-146-9	Upper Butternut	2050101000418	Butternut Creek	11/11/16	42.6573100	-75.1500000					Yes
ľ	115	SR-146-9	Upper Butternut	2050101000418	Butternut Creek	11/11/16	42.6633400	-75.1461200					Yes
ľ	1372	SR-146-9-37	Upper Butternut	2050101000950	Unnamed tributary - UB_022	9/29/17	42.6644444	-75.1769444	Yes	LWD	Yes	Mid-channel	Yes
ľ	1370	SR-146-9-37	Upper Butternut	2050101000950	Unnamed tributary - UB_022	9/29/17	42.6658333	-75.1755556	N/A	N/A	N/A	N/A	Yes
1													

Bank_Erosion_Pote	Bank Side	Bedrock	Flood Plain Acce Buffer	Po Invas	in BEHI ID	BEHI	Estimated_Tons_Lost_year	Comment	PhotoID
Extreme	Left		Yes		MS_13.1.3	56.33878192000	312.0000000000	Site 3	307-313
Extreme	Right		Yes		MS 13.1.2	46.05878192000	46.22222222000	Site 2., some existing buffer could use enhancement.	288-296
Extreme	Right		Recen	t Planting	MS 13.1.1	51.29473684000	27.90666667000	Site 1, Trees recently planted in riparian area	273-276
								SITE 1 - NOTE: Width on original field sheet = length of site. Root density: 20%. Cows on	
Extreme	Left		Yes		MB 001.1.1	48.53441938000	65.17333333000	left floodplain: almost no riparian buffer on left: right floodplain had decent riparian	748-757
								buffer- small trees and shrubs	
								SITE 2 - The site is on the outer side of a sharp turn to the left: erosion created a wide	
Fytreme	Right		Vec		MB 001 1 2	47 79473684000	154 07407410000	channel (approx 70') with a gravel bar and weeds in the center of the channel. Root	758-769
Extreme	ingin				001.1.2	47.75475004000	154.07407410000	density: 20% NOTE: Width on original field sheet – Length of site	/ 50 / 05
								SITE 3 - Right side had decent riparian cover with willow like trees. Boot density: 20%	
Extreme	Left		Yes		MB_001.1.3	46.44807018000	210.64814810000	NOTE: Width on original field short - longth of site	772-783
								SITE E depent riperion buffer on right sides small trees and brush. Beet Density 200/	
Extreme	Left		Yes		MB_001.1.5	50.85187970000	304.29629630000	NOTE: width on original field choot - length of cite	815-818
Future and a	1 - 64		No.a		NAC 12 1 2	F2 00222C27000	453 40340340000	Site 2. DW 20. buffer seteration beed on imagenry	2200 2200 0041 0047
Extreme	Leπ		Yes		MS_12.1.2	53.88322637000	457.40740740000	Site 2, BW 30, buffer potential based on imagery.	3390-3390, 0041, 0043
								SITE 6 - NOTE: (no site 6) Site 7 on original field sheet. NOTE: width on original field	
Extreme	Left		Yes		MB_001.1.6	56.67211525000	133.56296300000	sheet = length of site. Root Density: 5%. Left side had no significant riparian buffer;	
								decent riparian buffer on right side: small trees and brush.	
Extreme	Right		No		MB 001.1.8	51.78322637000	70.2000000000	SITE 8 - NOTE: Site 9 on original field sheet. Root Density: 10%. NOTE: width on original	3542-3546
								field sheet = length of site.	
Extreme	Left		Yes		MB_001.1.2b	48.61378446113	42.98666666667	SITE 2 - start LB erosion, cut off from RB floodplain, large gravel deposit	1272-1279
Extreme	Right		No		MS_11.1.5	47.30322637000	9.7500000000	SITE 5: Reach 7, Site 1, coming off high flow meander. Buffer potential based on imagery.	4037-4038
Extreme	Right		Yes		MS_11.1.3	49.73695906000	21.49333333000	SITE 3: Start Reach 3, Site 1	4027-4031
Future rece			N1/A		UD 1010	40.00000	42 1200000000	SITE 6 (Site 7) on left, Originally labeled site 7 on field sheet. Root Density 25%. Needs	2210 2220
Extreme			N/A		08_10.1.6	48.90055970000	42.1200000000	further buffer evaluation.	3319-3328
								SITE 5 (Site 6) Beaver dam 4 channel to left; Start of Reach 5; Slight erosion on right bank	
Extreme	N/A		N/A		UB 10.1.5	48.15029240000	1.4560000000	above Beaver dam 4: photo IMG 3311.JPG; no evaluation made. Originally labeled site 6	3312-3318
			, , ,		_			on field form. Root density: 25%. Needs further buffer evaluation.	
								SITE 4 (Site 5), Originally labeled site 5 on Field Form, Root Density 10%, Data sheet had	
Extreme	Right		Yes		UB_10.1.4	51.10902256000	11.7000000000	18 for BEH and 8 for Bank height, switched	3299-3304
								SITE 2 - debris jam, waterfall unstream - GPS lost 1.25 42 6400 -75 1848, braided	
Extreme	Right		N/A		UB_024.1.2	49.94553049000	73.95555556000	channel just unstream	1034-1037
								SITE 2 - (Site 3): debris nile on left: channel to left of island ~150' long: no evaluation	
Extreme	Right		No		UB_10.1.2	46.69473684000	1.6380000000	form	3259-3262
Extromo	Diaht		No			E2 216EE070000	126 28888800000	SITE 1. Field root density: 25%	2247 2252
Extreme	Diabt					53.51055970000	11 78666667000	Site 2. Measured rest density 20%	070 072
Extreme	Right		N/A		UB_022.1.2	53.18140351000	11.78666667000	Site 2, Measured root density: 20%	970-972
Extreme	Right		No		MS_08.1.3	52.80322637000	294.90740740000	Site 3, gravel bar below site, measured root density: 10, buffer potential based on	937-954
								Imagery	
Extreme	Left		Yes Yes		MS 07.1.6	54.10584795000	117.09629630000	Site 2 start, Half dead tree at DS end, sharp bend in river= very high back stress. Buffer	0125-0130
					_			potential based on imagery and photos.	
Extreme	Left		Yes		UB_022.1.6	54.24989303000	21.95555556000	SITE 6 - Riparian poor, SH 51 < 100 ft from site	894-897
Extreme	Right		Yes		UB_022.1.5	55.51655970000	57.14222222000	SITE 5 - riparian poor, old barb wire fence falling in stream	888-892
Extreme	Right		Yes		UB_022.1.4	47.59029240000	41.6000000000	SITE 4 - Riparian - shrubs and small trees, not much	877-882
Extreme	Left		Yes		UB_022.1.3b	46.72544859000	59.9444444000	SITE 3 - left - none, shrubs and grasses	866-873
Extreme	Right		Yes		MS_07.1.3	49.17251462000	32.7600000000	start site 3 - need riparian cover, Pipe at midpoint (see Alex's video) . (FW: 32.6)	0053-0058, 3439-3442
High	Left		Yes		MS_12.1.1	31.07923977000	12.03703704000	Site 1, buffer potential based on imagery.	3373,3377-3378, 0034
	1.4		Vaa		NAD 001D 1 2	25 65 10 70 70000	1 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SITE 2 - left, increase buffer density, bank height w/ lack of buffer; borders road, space	2540 2524
High	ιεπ		Yes		MB_001B.1.2	35.6518/9/0000	1.5600000000	woodland buffer of 8'	3519-3524
								SITE 2 - RB - drainages in Rb FP - get absorbed, deposition LB and fallen Ironwood with	
High	Right		Yes		MB_001A.2	35.36990926000	8.0888888900	rootwad, cut off from floodplain upstream	1692-1700
								Start of Site 2: channel split and channel-spanning beaver dam halfway through site.	
High	Right		Yes		MS 11.1.8	36.8300000000	14.0400000000	Measured % root density - 80%, right before channel split - site continues on right	6 to 15
								channel of split	
								SITE 2 - right, unclear if buffer potential, bank height: lack of deep buffer · braided	
High	Right		N/A		MB_001B.1.4	35.97749546000	1.87055555600	channels	1440-49
								SITE 1 - right enhance huffer down trees land use ag bordering yory parrow sparse	
High	Right		Yes		MB_001B.1.3	36.62807018000	0.63671111100	woodland at top of high bank, high, soft bank, lack of huffor, active field drainage	1433-37
High	Loft	Voc	NI-			20 50511770000	0 16022222200	ייסטטומונים מדנטף טר וווצון שמווג, וווצון, זטור שמווג, ומכג טר שטוופר, מכנועפ וופוט טרמווומצפ כודב ז	1127_11/1
	Leit	162	INO			29.20211//9000	8.10833333300	SITE I Site 2 (start) bodrook in bod macrowed west density 400/	
rign	Leit		N/A		UB_022.1.3	38.77603208000	15.16666667000	Site 3 (start), bedrock in bed, measured root density - 10%	988 - 992
High	Right		No		MS_07.1.1	38.28140351000	4.59564444400	Start Site 1, Long site: lower section substrate more with less cover and boulders in	0009-0017
								bank- see Alex video. Buffer potential based on imagery.	

Moderate	Right		Yes	MS_12.1.3	27.84330827000	25.61481481000	Site 3, BW 25, buffer potential based on imagery, some buffer but could be enhanced.	3406-3410
Moderate	Left		No	MB_001B.1.1	20.39473684000	0.42250000000	SITE 1 - left, 10x30 ft gravel bar right bank, creek impinging on high, soft bank, LWD on left bank	3508-3512
Moderate	Left		No	MS_07.1.5	25.58148827000	1.93844444400	Start of site 1, almost at start of reach, possible rusty crayfish, beaver dam at the bottom. Buffer potential based on imagery and photos.	89-97
No BEHI	Right		Yes				blockage; channel to side, Erosion upstream of here RB, No BEHI, Followed up with USC - see triage report. Buffer potential based on imagery	
No BEHI	Right		Yes				photo of channel resulting from beaver dams; one of several in this reach. Erosion upstream of here RB, No BEHI, Followed up with USC - see triage report. Some buffer but looks like could be enhanced, buffer potential based on imagery.	3278
No BEHI	Right		Yes				Beaver dam 1; Start of Reach 3; upstream of here erosion, no BEHI but Followed up with USC - see triage report. buffer potential based on imagery	3271-3272
Very High	N/A		No	MS_12.1.4	43.33140351000	86.66666667000	Site 4, BW 26. (300ft on left bank, then, at bend in creek, erosion was on right bank for 50 ft, similar conditions like left bank was.) B uffer potential based on imagery.	3412-3416
Very High	Right		Yes	MB_001.1.4	40.16473684000	6.52166666700	SITE 4 - NOTE: width on original field sheet = length of site. Root density: 40%.	808-814
Very High	Right		No	MB_001.1.7	44.09211525000	9.7500000000	SITE 7 - NOTE: Site 8 on original field sheet. Root density: 60%. NOTE: width on original field sheet = length of site. Right side buffer seemed good; left side had trees but only ~30' from a hayfield. Estimated gps coordinates based on photos.	3535-3541
Very High	Left		Yes	MB_001.1.1b	41.16140351000	11.50500000000	SITE 1 - start, cut off from RB floodplain, deposition US of erosion site, small buffer LB with field behind, RB nice floodplain, could use more veg	1224-1234
Very High	Right		Yes/Recent plan	t MS_11.1.7	42.17000000000	4.2400000000	Start of Site 1, think they measured BH from bottom of stream, measured % root density - 80%, tree tubes on left bank, gravel on LB	105-111
Very High	Right		Yes	MB_001A.1	41.15322637000	1.88066666700	SITE 1 - RB	1645-1648
Very High	Left		Yes	UB_027.1.1	44.72807018000	70.37333333000	Site 1	1373
Very High	Right		Yes	MS_11.1.6	43.37029240000	6.86833333300	SITE 6: Start Reach 7, Site 2, Based on photos think erosion on left bank, measured root density - 70%, clearcut left bank in upland with house construction, plant left bank (extend buffer)	4039-4043
Very High	Right		No	UB_027.1.1	43.75878192000	3.97222222200	SITE 1 - gravel bar on left bank across site; gravel bar on right side upstream of site	1320-1331
Very High	Right		Yes	MS_11.1.4	42.18695906000	8.97866666700	SITE 4: end of reach 6, site 1 reach 7, drainpipe coming within site	4032-4036
Very High	Right		Yes	UB_025.1.4	42.57174834000	11.26666667000	SITE 4 - gravel bar on left bank across from site; gravel bar on right side upstream of site	1241-1249
Very High	Left	Yes	Yes	UB_025.1.3	41.52395113000	16.9000000000	SITE 3	1193-1198
Very High	N/A	Yes	No	UB_025.1.2b	45.45322637000	17.2900000000	SITE 2	1189-1192
Very High	Left		Yes	MS_11.1.2	44.44638764000	7.49955555600	SITE 2: Site 2: 236 ft, 5-7 bare areas on high bank - side channel left bank. Buffer potential based on imagery.	4017-4021
Very High	Right		Yes	MS_11.1.1	41.84553049000	8.5280000000	SITE 1: Start of Reach 2 - Site 1 - high eroding bank	4012-4016
Very High	Left		No	UB_025.1.2	45.94767081000	6.83366666700	SITE 2-WP177, Bank side not noted, estimated Left bank from photos.	1055-1060
Very High	Right		No	UB_025.1.1	45.53655970000	4.71582222200	SITE 1 - bedrock and flat rocks on streambed. Movement of the creek over time towards Walters Rd is evident from dry stream beds on left of creek channel. Bank side not noted, estimated Right bank from photos.	1044-1048
Very High	Both		Yes	UB_024.1.1	40.33695906000	9.62962963000	SITE 1 - left bank armoring, right bank armoring, erosion right bank first 20', both banks armored, 100'	1029-1033
Very High	Left		Yes	UB_10.1.3	40.06473684000	31.2000000000	SITE 3 (Site 4), Start of Reach 2, Originally labeled site 4 on field form. Root Density: 50%. Followed up with USC - see triage report. buffer potential based on imagery	3263-3270
Very High	Left		Yes	UB_022.1.1	40.23655970000	0.5200000000	Site 1; mill building and stone wall on right bank; insufficient riparian buffer on left bank, % Root Density measured: 50%, Bed material small to medium stones, meander pattern low to moderate	964-969
Very High	Left		Yes	MS_08.1.2	43.43695906000	19.45185185000	Site 2 - Start, measured root density: 50, blockage below site, buffer potential based on imagery	909-930
Very High	Right		Yes	MS_08.1.1	41.53140351000	15.92620370000	Site 1 - Start, measured root density: 50, blockage below site, buffer potential based on imagery	906-908
Very High	Right		No	MS_07.1.7	43.82991810000	8.76296296300	Site 3 start. Buffer potential based on imagery and photos.	0131-0137
Very High	Right		Yes	MS_07.1.4	44.20140351000	9.31666666700	site 4 start, BFW: 22. Buffer potential based on imagery and photos.	0072-0075, 3458-3462
Very High	Right		No	MS_07.1.2	41.46989303000	13.74533333000	Site 2, Undercut at midpoint. Buffer potential based on imagery.	0034-0039
Very High	Right		No	UB_022.1.2b	45.76989303000	23.83333333000	SITE 2	845-851
Very High	Right		Yes	UB_022.1.1b	40.94767081000	6.7600000000	SITE 1 - left bank good, right bank mixed trees and brush, field extends to slope.	836-840

NYS DEC Region 4 Fisheries Notes

New Lisbon Township Region 4 Fisheries notes by Timothy Pokorny August 2021

OUTLINE

- 1. Aquatic Resources
 - Watersheds
 - Figure 1. Map of New Lisbon Township, Otsego Co., NY
 - Flowing waters
 - Ponded Waters
 - Tables 1-2. Summary of flowing and ponded waters
 - Aquatic Habitat Protection
- 2. Fisheries Management
 - Objectives
 - Fish Stocking
 - Fishing Regulations
 - Fisheries Surveys
- 3. Public Fishing/Boating Access
 - Opportunities
 - Online References

Aquatic Resources

Watersheds

There are three watersheds in the New Lisbon Township, all managed by DEC's Region 4 staff. Butternut Creek watershed is located in the western portion, Otego Creek watershed in the eastern portion and one small tributary to Wharton Creek (tributary to Unadilla River) is located in the northwest corner of the township. All waters are within the upper east branch of the Susquehanna River (SR) watershed. The western part of the township includes several trout streams such as Butternut Creek with surface flows eventually reaching the Unadilla River. The eastern part of the township is drained mostly by the West Branch Otego Creek which flows south to Otego Creek (Fig. 1, Table 1). Headwater streams are a very important component of watersheds and overall health of the watershed.

Flowing waters

The sub-watersheds in the township include some 75 mostly unnamed tributary or feeder streams that wind some 87 river miles through the township (Fig 1, Table 1). Thirty-six of the streams in the township are protected trout (T) streams, of which 18 are protected for trout spawning (TS). The others are considered too warm for trout but may offer fishing (class C) for cool/warmwater stream fishes yet may hold trout during the colder seasons. Two drinking water (class A) streams (tributaries to Gilbert Lake) are located in the township.

Table 1. Flowing waters in New Lisbon Township, Otsego County, NY.

		Length ²	
Waterbody	FIN ¹	(RM)	Tributaries
Butternut Creek	SR-146-9	32.12	24
Stony Creek	SR-146-9-29	12.46	10
Mill Creek	SR-146-9-29-1	6.35	5
Unnamed Water	SR-146-36-8-2	0.34	
Wharton Creek	SR-172-13	1.01	2
Lake Brook	SR-172-18	1.03	2
Pool Brook	SR-172-20	6.47	7
Unnamed Stream	SR-172-26-1	0.04	
Unnamed Stream	SR-172-28	1.38	
West Branch Otego Creek	SR-172-29	16.46	9
Lena Brook	SR-172-29-4	9.60	5
	Tota	al 87.27	

¹FIN—fisheries index number, SR—Susquehanna River.

²Stream distance in linear river miles—RM, estimated using ArcGIS 10.

Brown trout is the most common trout stocked annually into NYS streams, yet there are many trout streams that are not stocked because they support wild self-sustaining populations of mostly native brook trout. No streams are stocked with trout in the township.

Brown trout stocking was terminated in Butternut Creek in 2012 in favor or the brook trout population. Fisheries surveys in 2011, 2013, and 2016 revealed a self-sustaining pollution of brook trout in Butternut Creek among very few left-over stocked brown trout despite stocking numbers similar to Otego/Wharton Creeks. DEC policy for stocking trout streams prevents placing brown trout on top of a self-sustaining native brook trout population. Butternut Creek continues to be monitored to assess the status of this recovering brook trout population that should allow a unique opportunity for anglers to pursue quality sized brook trout in Otsego County.

Many headwater streams may be fishable for only part of the year as water level fluctuate (i.e., spring/ fall), and are fishless where streams dry up and go subterranean. Typically, these upper reaches receive little angling pressure but may offer fine wild brook trout action for adventurous anglers seeking these often small but feisty fish. Anglers may also find native brook trout above fish barriers (i.e., dams/ culverts) in some headwaters and stocked or wild brown trout below fish barriers in slower/warmer flows. Both brook and brown trout migrate upstream each fall to spawn and can repopulate optimal stream reaches they can ascend. Because of this movement, it is common to see wild brown trout in tributaries where they were not stocked. In general, rainbow trout are not stocked into streams in NYS anymore but it is common for them to wash out of private pond during high water events. Rainbow trout spawn in the spring and may be found in some of the flowing waters in the township (Table 1), also known to naturalize in some streams to establish wild populations like brown trout.

DEC Fisheries completed a five-year evaluation in small flowing waters as part of the Eastern Brook Trout Joint Venture Project (2007-2011). Approximately 3,475 streams were surveyed for presence or absence of brook trout in Region 4 with >1000 streams slated for an upgrade to their classification of protection. Two C streams located within the township have been recommended as C(T), with two more as C(TS) or protected for trout spawning as well as presence, plus an additional 10 awaiting upgrade from C(T) to C(TS). Fisheries data is available for 40 streams, mostly due to the brook trout study. The other 20 headwater streams have not been sampled by DEC Fisheries. Of the 40 streams sample, 19 support brook trout, one supports brown trout, eight support brook and brown trout, three have only Cyprinids (minnow family), and no fish were found in nine streams. Many surveys found a mix of both young and older brook trout, while no rainbow trout were found in the headwater streams of the township during the study.

Ponded Waters

A recent search found 14 ponded waters >0.5 surface acre in the township. That largest waterbody is Gilbert Lake located within Gilbert Lake State Park. The second largest pond is Turtle Lake (aka Crystal Lake) where a large campground is located. Three ponds are classified as C(T), one is classified AA(T) and 10 are classified C (Table 2).

Waterbody	EIN ¹	Area ²	Shore ²	Dam	Class ³	
waterbouy	FIN	(acres)	(miles)	Dam	Class	
Gilbert Lake	SR-172-18-P287	40.2	1.20	Yes	AA(T)	
Turtle Lake	SR-146-9-36-P208	27.1	1.17	Yes	С	
Unnamed Pond	SR-172-29-3-2-P5577	14.1	0.70	No	С	
Lake Of Twin Fawns	SR-146-9-29-2-P205A	7.8	0.63	Yes	С	
Unnamed Pond	SR-146-9-29-5-P5611	7.0	0.47	No	C(T)	
Unnamed Pond	SR-146-9-29-2-2-A-P5609	6.4	0.40	No	С	
Card Pond	SR-146-9-34-P207	3.9	0.47	No	С	
Unnamed Pond	SR-172-29-4-1-1-P5811	3.0	0.36	No	C(T)	
Unnamed Pond	SR-172-20-4B-P5575	2.3	0.24	No	С	
Unnamed Pond	SR-172-29-1-P290	2.2	0.32	No	С	
Unnamed Pond	SR-172-20-P5610	1.6	0.19	No	C(T)	
Spring Pond	SR-146-9-29-2-P205B	1.4	0.20	No	С	
Unnamed Pond	SR-172-20-4A-P5576	0.9	0.18	No	С	
Unnamed Pond	SR-146-9-29-2-P205C	0.7	0.15	No	С	
	Total	118.5	6.70			

Table 2. Ponded waters >0.5 surface acres in the New Lisbon Township, Otsego Co., NY.

¹FIN-fisheries index number, SR-Susquehanna River, P-pond no.

²All surface area and shore distance for unnamed ponds estimated using ArcGIS 10.

³Stream classifications: A—drinking water, swimming, and fishing. C—fishing only.

Gilbert Lake, three ponds and the state park (1,584 acres) with the same name is a popular local treasure. The park was built by the Civilian Conservations Corps between 1933 and 1941. Gilbert Lake is roughly 41 acres with a maximum depth of 20+ feet. Every spring Gilbert Lake receives some 600 rainbow trout and 100 brown trout and sometimes receives surplus trout in the fall. Gill netting in August of 2015 revealed a fish community consisting of rainbow trout, brown trout, pumpkinseed, and largemouth bass. Stocked trout offer a decent put-and-take fishery with some holdover fish available to anglers in the fall and following spring. Limited spawning and recruitment have been documented in the larger tributary to the lake and park employees have observed spawning fish most years. The lake is managed as a two-story fishery. No known fish surveys by NYSDEC have been conducted on Lake of Twin Ponds and the two unnamed ponds within the state park. These waters most likely provide some warmwater fishing opportunities for anglers adventurous enough to seek out these waters.

Turtle Lake (AKA Crystal Lake) is located at a privately owned campground. Camping at the campground and possible day passes would provide anglers access to this lake. NYSDEC generally doesn't sample private waters and thus is the case with this lake. Although, we often obtain fishing reports from anglers and have received reports of largemouth bass, chain pickerel, black crappie, sunfish, and brown bullheads being caught in this waterbody. Card Pond and Spring Pond are privately owned. Spring Pond was sampled in 1960, largemouth bass and creek chubsuckers were found.

Very little is known about these small unnamed ponded waters in the township (Table 1). The larger ponds may offer some decent opportunities for a chance to catch various warmwater fishes (i.e., bass, sunfish), likely to be present in small-moderate numbers. Furthermore, ice fishing opportunities may exist for most all fishable non-trout ponds when safe ice conditions exist during cold winters and access is not impeded by heavy snowfall.

Aquatic Habitat Protection

Headwaters in the rural New Lisbon Township (Fig. 1) are considered moderate-high quality because of the steady source of relatively clean/cold groundwater, a decrease in farming over time, and lack of other anthropogenic impacts (i.e., development) associated with urban areas. The presence of trout, a keystone species, sets the standard for stream protection in NYS as many other aquatic organisms are protected once a stream is designated T or TS (trout spawning). Trout stream organisms in particular need cold water, clean substrate, pool-riffle-run habitats, and riparian canopy cover to meet their basic needs for survival, growth, and reproduction. Because of their remoteness, it is very important that DEC programs have knowledge of and manage any proposed construction projects (i.e., logging) associated with these headwaters. When necessary, all projects in/near protected surface waters of the state should be reviewed and followed by the appropriate environmental permit(s) that give guidance on state and/or federal standards indented to protect vulnerable aquatic resources.

Projects associated with trout streams often require contractors to avoid aquatic habitats or mitigate if disturbed because even minor changes in water quality parameters due to stream work (i.e., turbidity) can be detrimental to trout populations. Unfortunately, these issues are common, especially when working near a riparian corridor, roadway or stream crossing (i.e., bridge/culvert), where unstable or steep banks are eroding into waterways after a flood event and/or a structure failure. Violations can often be avoided with effective communication between landowners, contractors, and agency staff. We recommend that folks always ask for free consultation before starting any project in/near any surface waters of the state. Fines and mitigation measures can be costly to the violator and landowners are usually responsible for all work being done on their property. We recommend avoiding any disturbance to aquatic systems and report any suspected violations of NYS law to the nearest DEC Regional office.

Fisheries Management

Objectives: To manage our inland fisheries resources in the public waters of the region on behalf of the people of NYS with guidance from standard DEC policies. Management is an ongoing process of continuous data collection to monitor resources and communicating with various stakeholders to meet their needs and attend to questions/concerns that arise. DEC is often faced with various issues and public demands that range in complexity and duration. Fisheries surveys are an important management tool that helps assess current conditions, update baseline data, and monitor changes over time. Stocking adjustments and regulation changes are other tools DEC utilizes.

Fish Stocking

The DEC Bureau of Fisheries operates 12 fish hatcheries statewide raising millions of fishes (mostly trout) to be stocked annually into the public waters of NYS. Most stocking is managed by region to supplement or maintain specific sportfish populations. Stocking is an important management tool, typically used for specific waters where natural production of a species is inadequate to sustain enough legal-sizes adults of a fish species to support local fishing pressure. A completed list of what fishes are stocked where and when is located on the DEC website (see below). Various private hatcheries in NYS also grown and sell fish (mostly trout) for stocking into both public and private waters (i.e., ponds) via a valid stocking permit issued by DEC. All fishes indented to be stocked into the waters of the state or sold as bait must be batch-sampled and certified disease-free before being ordered/purchased/transported.

As mentioned above, the DEC stocks various waters. However, it is possible for various stocked fishes to find their way up into adjacent non-stocked waters during normal seasonal migrations or swept downstream during high water events. Common pond fishes like bass and sunfish are often found in streams after escaping from private ponds during high water events when dams fail or pond levels are overtopped. Many introduced fishes can become established in their new habitat and form naturalize populations with some becoming invasive species once feral (i.e., grass carp), which can disrupt entire ecosystems. Remember it is never ok or legal to release live bait into any waterbody.

Fishing Regulations

The DEC's Bureau of Fisheries regulates fisheries resources and angler harvest of many fish species by using a general statewide or more specific waterbody regulation to best support long-term productivity of

the diverse sport fisheries in NYS. Region 4 is dominated by coldwater streams with statewide regulations that allow angling for trout in flowing waters all year with a creel season of April 1st to October 15th each year and a catch and release, artificial only season from October 16th to March 31st. Gilbert Lake is managed under a special trout regulation that allows for a daily limit of 3 trout/12" or greater in total length from April 1st to November 30th and icefishing is prohibited. When in doubt, always check the latest version of the DEC freshwater fishing regulations (see weblink below) for updates and before planning a fishing trip. Guidebooks are available anywhere you buy a fishing license and any DEC Fisheries office.

Fisheries Surveys

Other than the effort for the more recent brook trout study (2007-2011) and random CROTS—catch rate oriented trout stocking surveys on named trout streams (Table 1), water quality and local fish populations are not routinely monitored in headwater streams. Fish surveys are often limited to gathering specific data such as the status/condition of a fish species or fish community (i.e., trout, coldwater) on larger waterbodies that seem more fishing pressure. DEC does monitor the condition/health of various sport fishes in their respected communities, mostly for presence or levels of specific toxins/diseases in wild fish in larger waters as requested by DEC administration. To assess the current status of a rare or declining species in a waterbody (i.e., American eel), DEC Fisheries has team up with other cooperators such as a SUNY Oneonta to organize project goals and objectives, collect/analyze data and then summarize/report findings.

Once completed, most fisheries survey data are entered into an extensive statewide fisheries database for future use by agency staff, professional consultants, and academia. When DEC staff time permits, survey summaries and special project reports are completed and made available to the public. Study findings are also presented to our local sports groups and colleges upon request. Deliverables like comprehensive fisheries management plans and reports are less common but are warranted for our larger more popular fisheries. Due to limited staff time and the many small headwaters in township, very few Fisheries reports exists to explain in details the many unique opportunities awaiting anglers in these public waters.

Public Fishing/Boating Access

DEC Region 4 staff operate a successful public fishing/boating access program based on collaboration with numerous program staff, other agencies, and local stakeholders. To a lesser extent, DEC Fisheries also educates the public and hosts outreach events throughout the year but staff time and funding is very limited. Fortunately, relatively new legislation allows groups to apply for a free fishing event they must host on a public waterbody, thus providing a unique opportunity for newcomers to enjoy fishing without a license fee. See the weblink below for more details on free fishing events, which are offered year-round, including free fishing days for all anglers during President's week in February and Veteran's Day in November in addition to the last full weekend in June each year.

Opportunities

Public Fishing Rights—PFR are specific state-purchased easements located mainly on trout streams to allow footpath access to/from streams along shorelines for fishing only. There is PFR access on Butternut Creek and DEC owned lands provide access to other flowing waters. A statewide interactive trout mapper is available online (see Interactive Map link below). Access to public waters in NYS is purchased and managed for the benefit of the people of NYS. We recommend all users tread lightly, respect our natural resources, and carry in/out of all artificial refuse. The extra effort it may take to reach these remote waters could result in a memorable outdoor experience for everyone involved.

Online References

NYSDEC homepage: <u>www.dec.ny.gov</u> DEC Regions: <u>http://www.dec.ny.gov/about/244.html</u> FW Fishing Regulations: <u>www.dec.ny.gov/outdoor/7917.html</u> Free Fishing Days: <u>http://www.dec.ny.gov/outdoor/89821.html</u> Fish Stocking in NY by County: <u>www.dec.ny.gov/outdoor/7739.html</u> Public Fishing Rights (PFR): <u>www.dec.ny.gov/outdoor/7746.html</u> PFR and the landowner: <u>www.dec.ny.gov/outdoor/9922.html</u> Posted Lands & Navigation under ECL: <u>www.dec.ny.gov/outdoor/8371.html</u> DEC Interactive Trout Map: <u>https://www.dec.ny.gov/pubs/109457.html</u> Public Navigation Rights: <u>www.protectadks.org/programs/commcons/navigation-rights.pdf</u> Boating in NYS: <u>https://parks.ny.gov/recreation/boating/</u>

Fully Accessible Recreation Sites for People with Disabilities Fishing Access for Anglers with Disabilities: <u>www.dec.ny.gov/outdoor/31539.html</u> Motorized Access Program: <u>www.dec.ny.gov/outdoor/34035.html</u> - download a permit application & list of CP-3 sites (on PDF) **Fishes of New York State**

ADDITIONAL Map Products

County Highway maps (see local stores, gas stations, town/county offices) 2009 Catskill Park Outdoor Map (Greene, Delaware, Sullivan, Ulster counties) Order online: <u>www.vomaps.com</u> OR see local sporting goods shops

Figure 1. Map of aquatic resources in New Lisbon Township, Otsego Co., NY. Blue lines represent lotic waters and blue polygons represent lentic waters.

Bird Survey Data

New Lisbon Bird Data		
Species	Breeding Evidence	
Canada Goose	Confirmed (ON)	
Wood Duck	Possible (H)	
Mallard	Probable (P)	
Common Merganser	Probable (C)	
Wild Turkey	Confirmed (FL)	
Rock Pigeon	Possible (H)	
Mourning Dove	Confirmed (FL)	
by-throated Hummingbird Possible (H)		
Killdeer	Confirmed (FL)	
Great Blue Heron	Possible (H)	
Turkey Vulture	Possible (H)	
Barred Owl	Confirmed (NY)	
Red-shouldered Hawk	Probable (A)	
Broad-winged Hawk	Possible (H)	
Red-tailed Hawk	Possible (H)	
Belted Kingfisher	Probable (P)	
Yellow-bellied Sapsucker	Confirmed (NY)	
Downy Woodpecker	Confirmed (FY)	
Hairy Woodpecker	Confirmed (FL)	
Northern Flicker	Confirmed (FL)	
American Kestrel	Possible (H)	
Eastern Wood-Pewee	Possible (S)	
Least Flycatcher	Possible (S)	
Eastern Phoebe	Possible (S)	
Great Crested Flycatcher	Probable (P)	
Eastern Kingbird	Probable (P)	
Blue-headed Vireo	Possible (S)	
Warbling Vireo	Possible (S)	
Red-eyed Vireo	Confirmed (NB)	
Blue Jay	Possible (H)	
American Crow	Possible (H)	
Common Raven	Possible (H)	
Black-capped Chickadee	Confirmed (FL)	
Tufted Titmouse	Possible (H)	
Tree Swallow	Possible (H)	
Barn Swallow	Confirmed (FY)	
Red-breasted Nuthatch	Possible (S)	
White-breasted Nuthatch	Confirmed (FL)	
Brown Creeper	Possible (S)	

Appendix 4-1

House Wren	Confirmed (CF)
Winter Wren	Possible (S)
European Starling	Confirmed (CF)
Gray Catbird	Confirmed (FY)
Brown Thrasher	Confirmed (CF)
Veery	Probable (P)
Hermit Thrush	Possible (S)
Wood Thrush	Probable (P)
American Robin	Confirmed (NB)
Cedar Waxwing	Confirmed (CN)
House Finch	Confirmed (NY)
Purple Finch	Possible (S)
American Goldfinch	Probable (P)
Chipping Sparrow	Confirmed (CF)
Field Sparrow	Possible (S)
Dark-eyed Junco	Confirmed (CF)
White-throated Sparrow	Possible (S)
Savannah Sparrow	Possible (S)
Song Sparrow	Confirmed (FL)
Swamp Sparrow	Possible (S)
Eastern Meadowlark	Probable (P)
Eastern Towhee	Possible (S)
Bobolink	Confirmed (CF)
Baltimore Oriole	Probable (P)
Red-winged Blackbird	Confirmed (CF)
Brown-headed Cowbird	Possible (H)
Common Grackle	Confirmed (FY)
Ovenbird	Possible (S)
Northern Waterthrush	Possible (S)
Blue-winged Warbler	Possible (S)
Mourning Warbler	Possible (S)
Common Yellowthroat	Confirmed (FL)
Hooded Warbler	Possible (S)
American Redstart	Confirmed (CF)
Magnolia Warbler	Possible (S)
Blackburnian Warbler	Confirmed (CF)
Yellow Warbler	Probable (P)
Chestnut-sided Warbler	Possible (S)
Pine Warbler	Possible (S)
Yellow-rumped Warbler	Possible (S)
Prairie Warbler	Possible (S)
Black-throated Green Warbler	Possible (S)
Scarlet Tanager	Possible (S)

Northern Cardinal	Probable (P)
Rose-breasted Grosbeak	Probable (P)
Indigo Bunting	Confirmed (CF)

Cemeteries Map

TABLE OF CONTENTS

Note: Number immediately following name of cemetery in- dicates location of cemetery on Map (see pg. ii).
Mapii
Garratt Family Cemetery (1)
Gross Hill Cemetery (2)2
Gledhill Cemetery (also called Old Garrattsville) (3).7
Stetsonville Cemetery (4)
Gill Family Cemetery (5)
Thurston/Chapin Cemetery (6)
Smith Cemetery (7)
Eldred/Potter/Verry Cemetery (8)
Warren Family Cemetery (9)
Buck Cemetery (10)
Welcome Cemetery (11)
Barton Family Cemetery (12)
Tiffany Family Cemetery (13)
Harrington Family Lemetery (14)
Stukeley Barton Family Cemetery (15)
Gardnertown Cemetery (16)
Robinson Family Cemetery (17)
Falls Bridge Cemetery (also called West Creek) (18)57
Lena Cemetery (19)62
Hawkins Family Cemetery (20)
Legends/Rumors/Hearsay/Possibilities (indicated on map by Roman Numerals) Also, see specify
Index

Scenic Resources Facebook Reactions

Town of New Lisbon, NY - Unofficial February 28 at 12:24 PM · 🚱

Which of the following, or which other site, is your favorite scenic viewpoint within the town?

- 1. the beaver pond and heron rookery at Texas Schoolhouse State Forest
- 2. the view of the Butternut Valley coming down CR12 into the valley
- 3. the large pond on the south side of Blue Jay Hollow Road
- 4. the Butternut Creek looking upstream from the bridge at CR16
- 5. the Butternut Creek looking upstream from the bridge at CR12
- 6. the Butternut Creek looking upstream from the bridge at Myers Mills Road
- 7. the Butternut Creek looking downstream from the bridge at Myers Mills Road
- 8. the large pond on County Highway 14 at County Highway16
- 9. the view looking south on Parker Road at Bardin Road
- 10. the view from the top of Turnbull Road just below the Burlington town line looking southeast down into the valley
- 11. various sites in Gilbert Lake State Park, such as _____, ____, ____,
- 12. the wetlands on the West Branch Otsego Creek looking downstream from Goddards Road
- 13. Mill Creek looking up from SH51 in Garrattsville
- Stoney Creek looking upstream from Myers Mills Road
- 14. the view from the top of the hill on CR 14 between CR16 and S. Welcome Road

15. the view from the north side of Walters Road looking down to the creek that passes under Walters Road between Elliott and Harrington Roads

429 People reached	103 Engagements	– Distribution score		Boost post
🕑 You and 5 others			17 Com	nments 1 Share
🜓 Like			🖒 Share	

The view from our pasture looking north towards Garrattsville.

Sonja Galley

The view from our pasture looking north towards Garrattsville.

Like Reply Hide 1w Edited

Dauna Osborne

None please me as much as mine 😏 Looking down 51 south towards Myers Mills.

Like Reply Hide 1w

Abigail McEnroe My back yard.... 🕐 1

Like Reply Hide 1w

Scott Fickbohm Wow. We live in a beautiful place

Russ Tilley

C) 3

009

Russ Tilley

#3 and the sunrise on county 14 just before CR16

01

Like Reply Hide 1w

Cheryl Lee Goodspeed The weathered Barn on Bell Hill Rd

Derrick LaTour 14. best sunsets 1 Like Reply Hide 1w Joanne Long 13 10 1 Like Reply Hide 1w

Frank Rock Smokehaven Shepherds

9 was awesome for years -Was told by some downstaters it was a million-dollar view then the people in back of me planted norway spruce on purpose (long story).The view is blocked from everything but the top of my roof=Progress???

Historic Resources Map

